ﻻ يوجد ملخص باللغة العربية
Hyperbolic metamaterials (HMMs) represent a novel class of fascinating anisotropic plasmonic materials, supporting highly confined propagating plasmon polaritons in addition to surface plasmon polaritons. However, it is very challenging to tailor and excite these modes at optical frequencies by prism coupling because of the intrinsic difficulties in engineering non-traditional optical properties with artificial nanostructures and the unavailability of high refractive index prisms for matching the momentum between the incident light and the guided modes. Here, we report the mechanism of excitation of high-k Bloch-like Plasmon Polariton (BPPs) modes with ultrasmall modal volume using a meta-grating, which is a combined structure of a metallic diffraction grating and a type II HMM. We show how a 1D plasmonic grating without any mode in the infrared spectral range, if coupled to a HMM supporting high-k modes, can efficiently enable the excitation of these modes via coupling to far-field radiation. Our theoretical predictions are confirmed by reflection measurements as a function of angle of incidence and excitation wavelength. We introduce design principles to achieve a full control of high-k modes in meta-gratings, thus enabling a better understanding of light-matter interaction in this type of hybrid meta-structures. The proposed spectral response engineering is expected to find potential applications in bio-chemical sensors, integrated optics and optical sub-wavelength imaging.
Hyperbolic phonon polaritons (HPhPs) are generated when infrared photons couple to polar optic phonons in anisotropic media, confining long-wavelength light to nanoscale volumes. However, to realize the full potential of HPhPs for infrared optics, it
Periodic structures resonantly coupled to excitonic media allow the existence of extra intragap modes (Braggoritons), due to the coupling between Bragg photon modes and 3D bulk excitons. This induces unique and unexplored dispersive features, which c
Van der Waals materials and heterostructures manifesting strongly bound room temperature exciton states exhibit emergent physical phenomena and are of a great promise for optoelectronic applications. Here, we demonstrate that nanostructured multilaye
We demonstrate both analytically and numerically the existence of optical pulling forces acting on particles located near plasmonic interfaces. Two main factors contribute to the appearance of this negative reaction force. The interference between th
The recent development of the terahertz waveguide makes it an excellent platform for integrating many intriguing functionalities, which offers tremendous potential to build compact and robust terahertz systems. In the context of next-generation high-