ﻻ يوجد ملخص باللغة العربية
Van der Waals materials and heterostructures manifesting strongly bound room temperature exciton states exhibit emergent physical phenomena and are of a great promise for optoelectronic applications. Here, we demonstrate that nanostructured multilayer transition metal dichalcogenides by themselves provide an ideal platform for excitation and control of excitonic modes, paving the way to exciton-photonics. Hence, we show that by patterning the TMDCs into nanoresonators, strong dispersion and avoided crossing of excitons and hybrid polaritons with interaction potentials exceeding 410 meV may be controlled with great precision. We further observe that inherently strong TMDC exciton absorption resonances may be completely suppressed due to excitation of hybrid photon states and their interference. Our work paves the way to a next generation of integrated exciton optoelectronic nano-devices and applications in light generation, computing, and sensing.
Van der Waals (vdW) semiconductors are attractive for highly scaled devices and heterogeneous integration since they can be isolated into self-passivated, two-dimensional (2D) layers that enable superior electrostatic control. These attributes have l
Electromagnetic field confinement is crucial for nanophotonic technologies, since it allows for enhancing light-matter interactions, thus enabling light manipulation in deep sub-wavelength scales. In the terahertz (THz) spectral range, radiation conf
Layered materials can be assembled vertically to fabricate a new class of van der Waals (VDW) heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for con
The properties of van der Waals (vdW) heterostructures are drastically altered by a tunable moire superlattice arising from periodic variations of atomic alignment between the layers. Exciton diffusion represents an important channel of energy transp
In van der Waals (vdW) heterostructures formed by stacking two monolayers of transition metal dichalcogenides, multiple exciton resonances with highly tunable properties are formed and subject to both vertical and lateral confinement. We investigate