ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid Exciton-Plasmon-Polaritons in van der Waals Semiconductor Gratings

347   0   0.0 ( 0 )
 نشر من قبل Deep Jariwala
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Van der Waals materials and heterostructures manifesting strongly bound room temperature exciton states exhibit emergent physical phenomena and are of a great promise for optoelectronic applications. Here, we demonstrate that nanostructured multilayer transition metal dichalcogenides by themselves provide an ideal platform for excitation and control of excitonic modes, paving the way to exciton-photonics. Hence, we show that by patterning the TMDCs into nanoresonators, strong dispersion and avoided crossing of excitons and hybrid polaritons with interaction potentials exceeding 410 meV may be controlled with great precision. We further observe that inherently strong TMDC exciton absorption resonances may be completely suppressed due to excitation of hybrid photon states and their interference. Our work paves the way to a next generation of integrated exciton optoelectronic nano-devices and applications in light generation, computing, and sensing.

قيم البحث

اقرأ أيضاً

Van der Waals (vdW) semiconductors are attractive for highly scaled devices and heterogeneous integration since they can be isolated into self-passivated, two-dimensional (2D) layers that enable superior electrostatic control. These attributes have l ed to numerous demonstrations of field-effect devices ranging from transistors to triodes. By exploiting the controlled, substitutional doping schemes in covalently-bonded, three-dimensional (3D) semiconductors and the passivated surfaces of 2D semiconductors, one can construct devices that can exceed performance metrics of all-2D vdW heterojunctions. Here, we demonstrate, 2D/3D semiconductor heterojunctions using MoS2 as the prototypical 2D semiconductor laid upon Si and GaN as the 3D semiconductor layers. By tuning the Fermi levels in MoS2, we demonstrate devices that concurrently exhibit over seven orders of magnitude modulation in rectification ratios and conductance. Our results further suggest that the interface quality does not necessarily affect Fermi-level tuning at the junction opening up possibilities for novel 2D/3D heterojunction device architectures.
Electromagnetic field confinement is crucial for nanophotonic technologies, since it allows for enhancing light-matter interactions, thus enabling light manipulation in deep sub-wavelength scales. In the terahertz (THz) spectral range, radiation conf inement is conventionally achieved with specially designed metallic structures - such as antennas or nanoslits - with large footprints due to the rather long wavelengths of THz radiation. In this context, phonon polaritons - light coupled to lattice vibrations - in van der Waals (vdW) crystals have emerged as a promising solution for controlling light beyond the diffraction limit, as they feature extreme field confinements and low optical losses. However, experimental demonstration of nanoscale-confined phonon polaritons at THz frequencies has so far remained elusive. Here, we provide it by employing scattering-type scanning near-field optical microscopy (s-SNOM) combined with a free-electron laser (FEL) to reveal a range of low-loss polaritonic excitations at frequencies from 8 to 12 THz in the vdW semiconductor ${alpha}-MoO_3$. We visualize THz polaritons with i) in-plane hyperbolic dispersion, ii) extreme nanoscale field confinement (below ${lambda}_o/75$) and iii) long polariton lifetimes, with a lower limit of > 2 ps.
Layered materials can be assembled vertically to fabricate a new class of van der Waals (VDW) heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for con trol of light-matter coupling. Here, we incorporate molybdenum diselenide/boron nitride (MoSe$_2$/hBN) quantum wells (QWs) in a tunable optical microcavity. Part-light-part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe$_2$ excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe$_2$ monolayer QW, enhanced to 29 meV in MoSe$_2$/hBN/MoSe$_2$ double-QWs. The splitting at resonance provides an estimate of the exciton radiative lifetime of 0.4 ps. Our results pave the way for room temperature polaritonic devices based on multiple-QW VDW heterostructures, where polariton condensation and electrical polariton injection through the incorporation of graphene contacts may be realised.
The properties of van der Waals (vdW) heterostructures are drastically altered by a tunable moire superlattice arising from periodic variations of atomic alignment between the layers. Exciton diffusion represents an important channel of energy transp ort in semiconducting transition metal dichalcogenides (TMDs). While early studies performed on TMD heterobilayers have suggested that carriers and excitons exhibit long diffusion lengths, a rich variety of scenarios can exist. In a moire crystal with a large supercell size and deep potential, interlayer excitons may be completely localized. As the moire period reduces at a larger twist angle, excitons can tunnel between supercells and diffuse over a longer lifetime. The diffusion length should be the longest in commensurate heterostructures where the moire superlattice is completely absent. In this study, we experimentally demonstrate that the moire potential impedes interlayer exciton diffusion by comparing a number of WSe2/MoSe2 heterostructures prepared with chemical vapor deposition and mechanical stacking with accurately controlled twist angles. Our results provide critical guidance to developing twistronic devices that explore the moire superlattice to engineer material properties.
In van der Waals (vdW) heterostructures formed by stacking two monolayers of transition metal dichalcogenides, multiple exciton resonances with highly tunable properties are formed and subject to both vertical and lateral confinement. We investigate how a unique control knob, the twist angle between the two monolayers, can be used to control the exciton dynamics. We observe that the interlayer exciton lifetimes in $text{MoSe}_{text{2}}$/$text{WSe}_{text{2}}$ twisted bilayers (TBLs) change by one order of magnitude when the twist angle is varied from 1$^circ$ to 3.5$^circ$. Using a low-energy continuum model, we theoretically separate two leading mechanisms that influence interlayer exciton radiative lifetimes. The shift to indirect transitions in the momentum space with an increasing twist angle and the energy modulation from the moire potential both have a significant impact on interlayer exciton lifetimes. We further predict distinct temperature dependence of interlayer exciton lifetimes in TBLs with different twist angles, which is partially validated by experiments. While many recent studies have highlighted how the twist angle in a vdW TBL can be used to engineer the ground states and quantum phases due to many-body interaction, our studies explore its role in controlling the dynamics of optically excited states, thus, expanding the conceptual applications of twistronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا