ترغب بنشر مسار تعليمي؟ اضغط هنا

Refractive Index-Based Control of Hyperbolic Phonon-Polariton Propagation

100   0   0.0 ( 0 )
 نشر من قبل Thomas Folland
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hyperbolic phonon polaritons (HPhPs) are generated when infrared photons couple to polar optic phonons in anisotropic media, confining long-wavelength light to nanoscale volumes. However, to realize the full potential of HPhPs for infrared optics, it is crucial to understand propagation and loss mechanisms on substrates suitable for applications from waveguiding to infrared sensing. In this paper, we employ scattering-type scanning near-field optical microscopy (s-SNOM) and nano-Fourier transform infrared (FTIR) spectroscopy, in concert with analytical and numerical calculations, to elucidate HPhP characteristics as a function of the complex substrate dielectric function. We consider propagation on suspended, dielectric and metallic substrates to demonstrate that the thickness-normalized wavevector can be reduced by a factor of 25 simply by changing the substrate from dielectric to metallic behavior. Moreover, by incorporating the imaginary contribution to the dielectric function in lossy materials, the wavevector can be dynamically controlled by small local variations in loss or carrier density. Such effects may therefore be used to spatially separate hyperbolic modes of different orders, and indicates that for index-based sensing schemes that HPhPs can be more sensitive than surface polaritons in the thin film limit. Our results advance our understanding of fundamental polariton excitations and their potential for on-chip photonics and planar metasurface optics.

قيم البحث

اقرأ أيضاً

131 - Yiling Yu , Yifei Yu , Lujun Huang 2017
We report that the refractive index of transition metal dichacolgenide (TMDC) monolayers, such as MoS2, WS2, and WSe2, can be substantially tuned by > 60% in the imaginary part and > 20% in the real part around exciton resonances using CMOS-compatibl e electrical gating. This giant tunablility is rooted in the dominance of excitonic effects in the refractive index of the monolayers and the strong susceptibility of the excitons to the influence of injected charge carriers. The tunability mainly results from the effects of injected charge carriers to broaden the spectral width of excitonic interband transitions and to facilitate the interconversion of neutral and charged excitons. The other effects of the injected charge carriers, such as renormalizing bandgap and changing exciton binding energy, only play negligible roles. We also demonstrate that the atomically thin monolayers, when combined with photonic structures, can enable the efficiencies of optical absorption (reflection) tuned from 40% (60%) to 80% (20%) due to the giant tunability of refractive index. This work may pave the way towards the development of field-effect photonics in which the optical functionality can be controlled with CMOS circuits.
Hyperbolic metamaterials (HMMs) represent a novel class of fascinating anisotropic plasmonic materials, supporting highly confined propagating plasmon polaritons in addition to surface plasmon polaritons. However, it is very challenging to tailor and excite these modes at optical frequencies by prism coupling because of the intrinsic difficulties in engineering non-traditional optical properties with artificial nanostructures and the unavailability of high refractive index prisms for matching the momentum between the incident light and the guided modes. Here, we report the mechanism of excitation of high-k Bloch-like Plasmon Polariton (BPPs) modes with ultrasmall modal volume using a meta-grating, which is a combined structure of a metallic diffraction grating and a type II HMM. We show how a 1D plasmonic grating without any mode in the infrared spectral range, if coupled to a HMM supporting high-k modes, can efficiently enable the excitation of these modes via coupling to far-field radiation. Our theoretical predictions are confirmed by reflection measurements as a function of angle of incidence and excitation wavelength. We introduce design principles to achieve a full control of high-k modes in meta-gratings, thus enabling a better understanding of light-matter interaction in this type of hybrid meta-structures. The proposed spectral response engineering is expected to find potential applications in bio-chemical sensors, integrated optics and optical sub-wavelength imaging.
The use of relatively simple structures to achieve high performance refractive index sensors has always been urgently needed. In this work, we propose a lithography-free sensing platform based on metal-dielectric cavity, the sensitivity of our device can reach 1456700 nm/RIU for solution and 1596700 nm/RIU for solid material, and the FOM can be up to 1234500 /RIU for solution and 1900800 /RIU for solid material, which both are much higher than most sensing methods. This sensor has excellent sensing performance in both TE and TM light, and suitable for integrated microfluidic channels. Our scheme uses a multi-layers structure with a 10 nm gold film sandwiched between prism and analyte, and shows a great potential for low-cost sensing with high performance.
Sub-wavelength diffractive optics, commonly known as metasurfaces, have recently garnered significant attention for their ability to create ultra-thin flat lenses with extremely short focal lengths. Several materials with different refractive indices have been used to create metasurface lenses (metalenses). In this paper, we analyze the role of material refractive indices on the performance of these metalenses. We employ both forward and inverse design methodologies to perform our analysis. We found that, while high refractive index materials allow for extreme reduction of the focal length, for moderate focal lengths and numerical aperture (<0.6), there is no appreciable difference in focal spot-size and focusing efficiency for metalenses made of different materials with refractive indices ranging between n= 1.25 to n=3.5.
Which systems are ideal to obtain negative refraction with no absorption? Electromagnetically induced transparency (EIT) is a method to suppress absorption and make a material transparent to a field of a given frequency. Such a system has been discus sed in [1]; however the main limitations for negative refraction introduced are the necessity of resonant electric and magnetic dipole transitions, and the necessity of very dense media. We suggest using frequency translators in a composite system that would provide negative refraction for a range of optical frequencies while attempting to overcome the limitations discussed above. In the process of using frequency translators, we also find composite systems that can be used for refractive index enhancement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا