ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of electric current on optical orientation of electrons in AlGaAs/GaAs heterostructure

378   0   0.0 ( 0 )
 نشر من قبل Olga Ken
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف O. S. Ken




اسأل ChatGPT حول البحث

The effect of a lateral electric current on the photoluminescence H-band of an AlGaAs/GaAs heterostructure is investigated. The photoluminescence intensity and optical orientation of electrons contributing to the H-band are studied by means of continuous wave and time-resolved photoluminescence spectroscopy and time-resolved Kerr rotation. It is shown that the H-band is due to recombination of the heavy holes localized at the heterointerface with photoexcited electrons attracted to the heterointerface from the GaAs layer. Two lines with significantly different decay times constitute the H-band: a short-lived high-energy one and a long-lived low-energy one. The high-energy line originates from recombination of electrons freely moving along the structure plane, while the low-energy one is due to recombination of donor-bound electrons near the interface. Application of the lateral electric field of ~ 100-200 V/cm results in a quenching of both lines. This quenching is due to a decrease of electron concentration near the heterointerface as a result of a photocurrent-induced heating of electrons in the GaAs layer. On the contrary, electrons near the heterointerface are effectively cooled, so the donors near the interface are not completely empty up to ~ 100 V/cm, which is in stark contrast with the case of bulk materials. The optical spin polarization of the donor-bound electrons near the heterointerface weakly depends on the electric field. Their polarization kinetics is determined by the spin dephasing in the hyperfine fields of the lattice nuclei. The long spin memory time (> 40 ns) can be associated with suppression of the Bir-Aronov-Pikus mechanism of spin relaxation for electrons.

قيم البحث

اقرأ أيضاً

We have studied the efficacy of (NH4)2Sx surface passivation on the (311)A GaAs surface. We report XPS studies of simultaneously-grown (311)A and (100) heterostructures showing that the (NH4)2Sx solution removes surface oxide and sulfidizes both surf aces. Passivation is often characterized using photoluminescence measurements, we show that while (NH4)2Sx treatment gives a 40 - 60 x increase in photoluminescence intensity for the (100) surface, an increase of only 2 - 3 x is obtained for the (311)A surface. A corresponding lack of reproducible improvement in the gate hysteresis of (311)A heterostructure transistor devices made with the passivation treatment performed immediately prior to gate deposition is also found. We discuss possible reasons why sulfur passivation is ineffective for (311)A GaAs, and propose alternative strategies for passivation of this surface.
84 - N. Johnson , C. Emary , S. Ryu 2017
Using a recently-developed time-of-flight measurement technique with 1 ps time resolution and electron-energy spectroscopy, we developed a method to measure the longitudinal-optical-phonon emission rate of hot electrons travelling along a depleted ed ge of a quantum Hall bar. A comparison of the experimental results to a single-particle model implies that the main scattering mechanism involves a two-step process via intra-Landau-level transition. We show this scattering can be suppressed by controlling the edge potential profile, and a scattering length > 1 mm can be achieved, allowing the use of this system for scalable single-electron device applications.
We have fabricated AlGaAs/GaAs heterostructure devices in which the conduction channel can be populated with either electrons or holes simply by changing the polarity of a gate bias. The heterostructures are entirely undoped, and carriers are instead induced electrostatically. We use these devices to perform a direct comparison of the scattering mechanisms of two-dimensional (2D) electrons ($mu_textrm{peak}=4times10^6textrm{cm}^2/textrm{Vs}$) and holes ($mu_textrm{peak}=0.8times10^6textrm{cm}^2/textrm{Vs}$) in the same conduction channel with nominally identical disorder potentials. We find significant discrepancies between electron and hole scattering, with the hole mobility being considerably lower than expected from simple theory.
We present time-resolved Kerr rotation measurements of electron spin dynamics in a GaAs/AlGaAs heterojunction system that contains a high-mobility two-dimensional electron gas (2DEG). Due to the complex layer structure of this material the Kerr rotat ion signals contain information from electron spins in three different layers: the 2DEG layer, a GaAs epilayer in the heterostructure, and the underlying GaAs substrate. The 2DEG electrons can be observed at low pump intensities, using that they have a less negative g-factor than electrons in bulk GaAs regions. At high pump intensities, the Kerr signals from the GaAs epilayer and the substrate can be distinguished when using a barrier between the two layers that blocks intermixing of the two electron populations. This allows for stronger pumping of the epilayer, which results in a shift of the effective g-factor. Thus, three populations can be distinguished using differences in g-factor. We support this interpretation by studying how the spin dynamics of each population has its unique dependence on temperature, and how they correlate with time-resolved reflectance signals.
We carry out microphotoluminescence measurements of an acceptor-bound exciton (A^0X) recombination in the applied magnetic field with a single impurity resolution. In order to describe the obtained spectra we develop a theoretical model taking into a ccount a quantum well (QW) confinement, an electron-hole and hole-hole exchange interaction. By means of fitting the measured data with the model we are able to study the fine structure of individual acceptors inside the QW. The good agreement between our experiments and the model indicates that we observe single acceptors in a pure two-dimensional environment whose states are unstrained in the QW plain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا