ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine Learning the Phenomenology of COVID-19 From Early Infection Dynamics

161   0   0.0 ( 0 )
 نشر من قبل Malik Magdon-Ismail
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a robust data-driven machine learning analysis of the COVID-19 pandemic from its early infection dynamics, specifically infection counts over time. The goal is to extract actionable public health insights. These insights include the infectious force, the rate of a mild infection becoming serious, estimates for asymtomatic infections and predictions of new infections over time. We focus on USA data starting from the first confirmed infection on January 20 2020. Our methods reveal significant asymptomatic (hidden) infection, a lag of about 10 days, and we quantitatively confirm that the infectious force is strong with about a 0.14% transition from mild to serious infection. Our methods are efficient, robust and general, being agnostic to the specific virus and applicable to different populations or cohorts.



قيم البحث

اقرأ أيضاً

69 - Massimo Materassi 2020
Some ideas are presented about the physical motivation of the apparent capacity of generalized logistic equations to describe the outbreak of the COVID-19 infection, and in general of quite many other epidemics. The main focuses here are: the complex , possibly fractal, structure of the locus describing the contagion event set; what can be learnt from the models of trophic webs with herd behaviour.
Among the many aspects that characterize the COVID-19 pandemic, two seem particularly challenging to understand: (i) the great geographical differences in the degree of virus contagiousness and lethality which were found in the different phases of th e epidemic progression, and (ii) the potential role of the infected peoples blood type in both the virus infectivity and the progression of the disease. A recent hypothesis could shed some light on both aspects. Specifically, it has been proposed that in the subject-to-subject transfer SARS-CoV-2 conserves on its capsid the erythrocytes antigens of the source subject. Thus these conserved antigens can potentially cause an immune reaction in a receiving subject that has previously acquired specific antibodies for the source subject antigens. This hypothesis implies a blood type-dependent infection rate. The strong geographical dependence of the blood type distribution could be, therefore, one of the factors at the origin of the observed heterogeneity in the epidemics spread. Here, we present an epidemiological deterministic model where the infection rules based on blood types are taken into account and compare our model outcomes with the exiting worldwide infection progression data. We found an overall good agreement, which strengthens the hypothesis that blood types do play a role in the COVID-19 infection.
In this paper, we deal with the study of the impact of nationwide measures COVID-19 anti-pandemic. We drive two processes to analyze COVID-19 data considering measures. We associate level of nationwide measure with value of parameters related to the contact rate of the model. Then a parametric solve, with respect to those parameters of measures, shows different possibilities of the evolution of the pandemic. Two machine learning tools are used to forecast the evolution of the pandemic. Finally, we show comparison between deterministic and two machine learning tools.
108 - Beatriz Seoane 2020
SARS-CoV-2 has disrupted the life of billions of people around the world since the first outbreak was officially declared in China at the beginning of 2020. Yet, important questions such as how deadly it is or its degree of spread within different co untries remain unanswered. In this work, we exploit the `universal growth of the mortality rate with age observed in different countries since the beginning of their respective outbreaks, combined with the results of the antibody prevalence tests in the population of Spain, to unveil both unknowns. We validate these results with an analogous antibody rate survey in the canton of Geneva, Switzerland. We also argue that the official number of deaths over 70 years old is importantly underestimated in most of the countries, and we use the comparison between the official records with the number of deaths mentioning COVID-19 in the death certificates to quantify by how much. Using this information, we estimate the fatality infection ratio (IFR) for the different age segments and the fraction of the population infected in different countries assuming a uniform exposure to the virus in all age segments. We also give estimations for the non-uniform IFR using the sero-epidemiological results of Spain, showing a very similar growth of the fatality ratio with age. Only for Spain, we estimate the probability (if infected) of being identified as a case, being hospitalized or admitted in the intensive care units as function of age. In general, we observe a nearly exponential growth of the fatality ratio with age, which anticipates large differences in total IFR in countries with different demographic distributions, with numbers that range from 1.82% in Italy, to 0.62% in China or even 0.14% in middle Africa.
COVID-19 pandemic has created an extreme pressure on the global healthcare services. Fast, reliable and early clinical assessment of the severity of the disease can help in allocating and prioritizing resources to reduce mortality. In order to study the important blood biomarkers for predicting disease mortality, a retrospective study was conducted on 375 COVID-19 positive patients admitted to Tongji Hospital (China) from January 10 to February 18, 2020. Demographic and clinical characteristics, and patient outcomes were investigated using machine learning tools to identify key biomarkers to predict the mortality of individual patient. A nomogram was developed for predicting the mortality risk among COVID-19 patients. Lactate dehydrogenase, neutrophils (%), lymphocyte (%), high sensitive C-reactive protein, and age - acquired at hospital admission were identified as key predictors of death by multi-tree XGBoost model. The area under curve (AUC) of the nomogram for the derivation and validation cohort were 0.961 and 0.991, respectively. An integrated score (LNLCA) was calculated with the corresponding death probability. COVID-19 patients were divided into three subgroups: low-, moderate- and high-risk groups using LNLCA cut-off values of 10.4 and 12.65 with the death probability less than 5%, 5% to 50%, and above 50%, respectively. The prognostic model, nomogram and LNLCA score can help in early detection of high mortality risk of COVID-19 patients, which will help doctors to improve the management of patient stratification.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا