ترغب بنشر مسار تعليمي؟ اضغط هنا

A scaling approach to estimate the COVID-19 infection fatality ratio from incomplete data

109   0   0.0 ( 0 )
 نشر من قبل Beatriz Seoane
 تاريخ النشر 2020
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English
 تأليف Beatriz Seoane




اسأل ChatGPT حول البحث

SARS-CoV-2 has disrupted the life of billions of people around the world since the first outbreak was officially declared in China at the beginning of 2020. Yet, important questions such as how deadly it is or its degree of spread within different countries remain unanswered. In this work, we exploit the `universal growth of the mortality rate with age observed in different countries since the beginning of their respective outbreaks, combined with the results of the antibody prevalence tests in the population of Spain, to unveil both unknowns. We validate these results with an analogous antibody rate survey in the canton of Geneva, Switzerland. We also argue that the official number of deaths over 70 years old is importantly underestimated in most of the countries, and we use the comparison between the official records with the number of deaths mentioning COVID-19 in the death certificates to quantify by how much. Using this information, we estimate the fatality infection ratio (IFR) for the different age segments and the fraction of the population infected in different countries assuming a uniform exposure to the virus in all age segments. We also give estimations for the non-uniform IFR using the sero-epidemiological results of Spain, showing a very similar growth of the fatality ratio with age. Only for Spain, we estimate the probability (if infected) of being identified as a case, being hospitalized or admitted in the intensive care units as function of age. In general, we observe a nearly exponential growth of the fatality ratio with age, which anticipates large differences in total IFR in countries with different demographic distributions, with numbers that range from 1.82% in Italy, to 0.62% in China or even 0.14% in middle Africa.



قيم البحث

اقرأ أيضاً

145 - Carlo R. Contaldi 2020
Timely estimation of the current value for COVID-19 reproduction factor $R$ has become a key aim of efforts to inform management strategies. $R$ is an important metric used by policy-makers in setting mitigation levels and is also important for accur ate modelling of epidemic progression. This brief paper introduces a method for estimating $R$ from biased case testing data. Using testing data, rather than hospitalisation or death data, provides a much earlier metric along the symptomatic progression scale. This can be hugely important when fighting the exponential nature of an epidemic. We develop a practical estimator and apply it to Scottish case testing data to infer a current (20 May 2020) $R$ value of $0.74$ with $95%$ confidence interval $[0.48 - 0.86]$.
We demonstrate the ability of statistical data assimilation to identify the measurements required for accurate state and parameter estimation in an epidemiological model for the novel coronavirus disease COVID-19. Our context is an effort to inform p olicy regarding social behavior, to mitigate strain on hospital capacity. The model unknowns are taken to be: the time-varying transmission rate, the fraction of exposed cases that require hospitalization, and the time-varying detection probabilities of new asymptomatic and symptomatic cases. In simulations, we obtain accurate estimates of undetected (that is, unmeasured) infectious populations, by measuring the detected cases together with the recovered and dead - and without assumed knowledge of the detection rates. Given a noiseless measurement of the recovered population, excellent estimates of all quantities are obtained using a temporal baseline of 101 days, with the exception of the time-varying transmission rate at times prior to the implementation of social distancing. With low noise added to the recovered population, accurate state estimates require a lengthening of the temporal baseline of measurements. Estimates of all parameters are sensitive to the contamination, highlighting the need for accurate and uniform methods of reporting. The aim of this paper is to exemplify the power of SDA to determine what properties of measurements will yield estimates of unknown parameters to a desired precision, in a model with the complexity required to capture important features of the COVID-19 pandemic.
Epidemics generally spread through a succession of waves that reflect factors on multiple timescales. On short timescales, super-spreading events lead to burstiness and overdispersion, while long-term persistent heterogeneity in susceptibility is exp ected to lead to a reduction in the infection peak and the herd immunity threshold (HIT). Here, we develop a general approach to encompass both timescales, including time variations in individual social activity, and demonstrate how to incorporate them phenomenologically into a wide class of epidemiological models through parameterization. We derive a non-linear dependence of the effective reproduction number Re on the susceptible population fraction S. We show that a state of transient collective immunity (TCI) emerges well below the HIT during early, high-paced stages of the epidemic. However, this is a fragile state that wanes over time due to changing levels of social activity, and so the infection peak is not an indication of herd immunity: subsequent waves can and will emerge due to behavioral changes in the population, driven (e.g.) by seasonal factors. Transient and long-term levels of heterogeneity are estimated by using empirical data from the COVID-19 epidemic as well as from real-life face-to-face contact networks. These results suggest that the hardest-hit areas, such as NYC, have achieved TCI following the first wave of the epidemic, but likely remain below the long-term HIT. Thus, in contrast to some previous claims, these regions can still experience subsequent waves.
It is well recognized that population heterogeneity plays an important role in the spread of epidemics. While individual variations in social activity are often assumed to be persistent, i.e. constant in time, here we discuss the consequences of dyna mic heterogeneity. By integrating the stochastic dynamics of social activity into traditional epidemiological models we demonstrate the emergence of a new long timescale governing the epidemic in broad agreement with empirical data. Our model captures multiple features of real-life epidemics such as COVID-19, including prolonged plateaus and multiple waves, which are transiently suppressed due to the dynamic nature of social activity. The existence of the long timescale due to the interplay between epidemic and social dynamics provides a unifying picture of how a fast-paced epidemic typically will transition to the endemic state.
We present modeling of the COVID-19 epidemic in Illinois, USA, capturing the implementation of a Stay-at-Home order and scenarios for its eventual release. We use a non-Markovian age-of-infection model that is capable of handling long and variable ti me delays without changing its model topology. Bayesian estimation of model parameters is carried out using Markov Chain Monte Carlo (MCMC) methods. This framework allows us to treat all available input information, including both the previously published parameters of the epidemic and available local data, in a uniform manner. To accurately model deaths as well as demand on the healthcare system, we calibrate our predictions to total and in-hospital deaths as well as hospital and ICU bed occupancy by COVID-19 patients. We apply this model not only to the state as a whole but also its sub-regions in order to account for the wide disparities in population size and density. Without prior information on non-pharmaceutical interventions (NPIs), the model independently reproduces a mitigation trend closely matching mobility data reported by Google and Unacast. Forward predictions of the model provide robust estimates of the peak position and severity and also enable forecasting the regional-dependent results of releasing Stay-at-Home orders. The resulting highly constrained narrative of the epidemic is able to provide estimates of its unseen progression and inform scenarios for sustainable monitoring and control of the epidemic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا