ﻻ يوجد ملخص باللغة العربية
While the community keeps promoting end-to-end models over conventional hybrid models, which usually are long short-term memory (LSTM) models trained with a cross entropy criterion followed by a sequence discriminative training criterion, we argue that such conventional hybrid models can still be significantly improved. In this paper, we detail our recent efforts to improve conventional hybrid LSTM acoustic models for high-accuracy and low-latency automatic speech recognition. To achieve high accuracy, we use a contextual layer trajectory LSTM (cltLSTM), which decouples the temporal modeling and target classification tasks, and incorporates future context frames to get more information for accurate acoustic modeling. We further improve the training strategy with sequence-level teacher-student learning. To obtain low latency, we design a two-head cltLSTM, in which one head has zero latency and the other head has a small latency, compared to an LSTM. When trained with Microsofts 65 thousand hours of anonymized training data and evaluated with test sets with 1.8 million words, the proposed two-head cltLSTM model with the proposed training strategy yields a 28.2% relative WER reduction over the conventional LSTM acoustic model, with a similar perceived latency.
User studies have shown that reducing the latency of our simultaneous lecture translation system should be the most important goal. We therefore have worked on several techniques for reducing the latency for both components, the automatic speech reco
Acoustic models in real-time speech recognition systems typically stack multiple unidirectional LSTM layers to process the acoustic frames over time. Performance improvements over vanilla LSTM architectures have been reported by prepending a stack of
Recently sequence-to-sequence models have started to achieve state-of-the-art performance on standard speech recognition tasks when processing audio data in batch mode, i.e., the complete audio data is available when starting processing. However, whe
The Listen, Attend and Spell (LAS) model and other attention-based automatic speech recognition (ASR) models have known limitations when operated in a fully online mode. In this paper, we analyze the online operation of LAS models to demonstrate that
Time Delay Neural Networks (TDNNs) are widely used in both DNN-HMM based hybrid speech recognition systems and recent end-to-end systems. Nevertheless, the receptive fields of TDNNs are limited and fixed, which is not desirable for tasks like speech