ﻻ يوجد ملخص باللغة العربية
Coronaviruses are a famous family of viruses that cause illness in both humans and animals. The new type of coronavirus COVID-19 was firstly discovered in Wuhan, China. However, recently, the virus has widely spread in most of the world and causing a pandemic according to the World Health Organization (WHO). Further, nowadays, all the world countries are striving to control the COVID-19. There are many mechanisms to detect coronavirus including clinical analysis of chest CT scan images and blood test results. The confirmed COVID-19 patient manifests as fever, tiredness, and dry cough. Particularly, several techniques can be used to detect the initial results of the virus such as medical detection Kits. However, such devices are incurring huge cost, taking time to install them and use. Therefore, in this paper, a new framework is proposed to detect COVID-19 using built-in smartphone sensors. The proposal provides a low-cost solution, since most of radiologists have already held smartphones for different daily-purposes. Not only that but also ordinary people can use the framework on their smartphones for the virus detection purposes. Nowadays Smartphones are powerful with existing computation-rich processors, memory space, and large number of sensors including cameras, microphone, temperature sensor, inertial sensors, proximity, colour-sensor, humidity-sensor, and wireless chipsets/sensors. The designed Artificial Intelligence (AI) enabled framework reads the smartphone sensors signal measurements to predict the grade of severity of the pneumonia as well as predicting the result of the disease.
The beginning of 2020 has seen the emergence of coronavirus outbreak caused by a novel virus called SARS-CoV-2. The sudden explosion and uncontrolled worldwide spread of COVID-19 show the limitations of existing healthcare systems in timely handling
Background: The inability to test at scale has become humanitys Achilles heel in the ongoing war against the COVID-19 pandemic. A scalable screening tool would be a game changer. Building on the prior work on cough-based diagnosis of respiratory dise
We present a machine learning based COVID-19 cough classifier which can discriminate COVID-19 positive coughs from both COVID-19 negative and healthy coughs recorded on a smartphone. This type of screening is non-contact, easy to apply, and can reduc
A mathematical model for the COVID-19 pandemic spread, which integrates age-structured Susceptible-Exposed-Infected-Recovered-Deceased dynamics with real mobile phone data accounting for the population mobility, is presented. The dynamical model adju
SARS-CoV-2 is a severe respiratory infection that infects humans. Its outburst entitled it as a pandemic emergence. To get a grip on this, outbreak specific preventive and therapeutic interventions are urgently needed. It must be said that, until now