ترغب بنشر مسار تعليمي؟ اضغط هنا

Partial Queries for Constraint Acquisition

64   0   0.0 ( 0 )
 نشر من قبل Nadjib Lazaar Dr
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning constraint networks is known to require a number of membership queries exponential in the number of variables. In this paper, we learn constraint networks by asking the user partial queries. That is, we ask the user to classify assignments to subsets of the variables as positive or negative. We provide an algorithm, called QUACQ, that, given a negative example, focuses onto a constraint of the target network in a number of queries logarithmic in the size of the example. The whole constraint network can then be learned with a polynomial number of partial queries. We give information theoretic lower bounds for learning some simple classes of constraint networks and show that our generic algorithm is optimal in some cases.



قيم البحث

اقرأ أيضاً

67 - Subhash Kak 2018
This paper examines common assumptions regarding the decision-making internal environment for intelligent agents and investigates issues related to processing of memory and belief states to help obtain better understanding of the responses. In specif ic, we consider order effects and discuss both classical and non-classical explanations for them. We also consider implicit cognition and explore if certain inaccessible states may be best modeled as quantum states. We propose that the hypothesis that quantum states are at the basis of order effects be tested on large databases such as those related to medical treatment and drug efficacy. A problem involving a maze network is considered and comparisons made between classical and quantum decision scenarios for it.
We consider ontology-mediated queries (OMQs) based on expressive description logics of the ALC family and (unions) of conjunctive queries, studying the rewritability into OMQs based on instance queries (IQs). Our results include exact characterizatio ns of when such a rewriting is possible and tight complexity bounds for deciding rewritability. We also give a tight complexity bound for the related problem of deciding whether a given MMSNP sentence is equivalent to a CSP.
We consider an example of stochastic games with partial, asymmetric and non-classical information. We obtain relevant equilibrium policies using a new approach which allows managing the belief updates in a structured manner. Agents have access only t o partial information updates, and our approach is to consider optimal open loop control until the information update. The agents continuously control the rates of their Poisson search clocks to acquire the locks, the agent to get all the locks before others would get reward one. However, the agents have no information about the acquisition status of others and will incur a cost proportional to their rate process. We solved the problem for the case with two agents and two locks and conjectured the results for $N$-agents. We showed that a pair of (partial) state-dependent time-threshold policies form a Nash equilibrium.
*** To appear in IJCAI 2015 proceedings *** In Constraint Programming (CP), a portfolio solver uses a variety of different solvers for solving a given Constraint Satisfaction / Optimization Problem. In this paper we introduce sunny-cp2: the first par allel CP portfolio solver that enables a dynamic, cooperative, and simultaneous execution of its solvers in a multicore setting. It incorporates state-of-the-art solvers, providing also a usable and configurable framework. Empirical results are very promising. sunny-cp2 can even outperform the performance of the oracle solver which always selects the best solver of the portfolio for a given problem.
Several algorithms for solving constraint satisfaction problems are based on survey propagation, a variational inference scheme used to obtain approximate marginal probability estimates for variable assignments. These marginals correspond to how freq uently each variable is set to true among satisfying assignments, and are used to inform branching decisions during search; however, marginal estimates obtained via survey propagation are approximate and can be self-contradictory. We introduce a more general branching strategy based on streamlining constraints, which sidestep hard assignments to variables. We show that streamlined solvers consistently outperform decimation-based solvers on random k-SAT instances for several problem sizes, shrinking the gap between empirical performance and theoretical limits of satisfiability by 16.3% on average for k=3,4,5,6.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا