ترغب بنشر مسار تعليمي؟ اضغط هنا

Photo-induced electron pairing in a driven cavity

194   0   0.0 ( 0 )
 نشر من قبل Hongmin Gao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate how virtual scattering of laser photons inside a cavity via two-photon processes can induce controllable long-range electron interactions in two-dimensional materials. We show that laser light that is red(blue)-detuned from the cavity yields attractive(repulsive) interactions, whose strength is proportional to the laser intensity. Furthermore, we find that the interactions are not screened effectively except at very low frequencies. For realistic cavity parameters, laser-induced heating of the electrons by inelastic photon scattering is suppressed and coherent electron interactions dominate. When the interactions are attractive, they cause an instability in the Cooper channel at a temperature proportional to the square root of the driving intensity. Our results provide a novel route for engineering electron interactions in a wide range of two-dimensional materials including AB-stacked bilayer graphene and the conducting interface between LaAlO3 and SrTiO3.



قيم البحث

اقرأ أيضاً

Recently, it has been proposed that a mechanism for the appearance of non-equilibrium superconductivity in a resonantly driven semiconductor with repulsive interband interactions exists.~cite{Goldstein_PRB15} The underlying microscopic model relies o n the appearance of a specific fermionic dissipation mechanism and the careful simultaneous tailoring of the electronic dispersion relation and electron-electron interactions. We, instead, show that the phenomenon is rather general and does not need a special fine tuning of parameters. By considering a pair of bands with locally the same sign of concavity, we demonstrate that interband pairing arises under the natural assumption of the presence of phononic baths and radiative recombination. In light of these findings, we demonstrate how the emergence of superconductivity can be understood in terms of standard equilibrium interband BCS theory.
85 - O. V. Kibis 2019
It is shown theoretically that the confinement of an electron at a repulsive potential can exist in nanostructures subjected to a strong high-frequency electromagnetic field. As a result of the confinement, the metastable bound electron state of the repulsive potential appears. This effect can lead, particularly, to electron pairing in nanostructures containing conduction electrons with different effective masses.
Here we propose a mechanism by which spin polarization can be generated dynamically in chiral molecular systems undergoing photo-induced electron transfer. The proposed mechanism explains how spin polarization emerges in systems where charge transpor t is dominated by incoherent hopping, mediated by spin orbit and electronic exchange couplings through an intermediate charge transfer state. We derive a simple expression for the spin polarization that predicts a non-monotonic temperature dependence consistent with recent experiments. We validate this theory using approximate quantum master equations and the numerically exact hierarchical equations of motion. The proposed mechanism of chirality induced spin selectivity should apply to many chiral systems, and the ideas presented here have implications for the study of spin transport at temperatures relevant to biology, and provide simple principles for the molecular control of spins in fluctuating environments.
The superconducting pairing of electrons in doped graphene due to in-plane and out-of-plane phonons is considered. It is shown that the structure of the order parameter in the valley space substantially affects conditions of the pairing. Electron-hol e pairing in graphene bilayer in the strong coupling regime is also considered. Taking into account retardation of the screened Coulomb pairing potential shows a significant competition between the electron-hole direct attraction and their repulsion due to virtual plasmons and single-particle excitations.
The possibility of superconducting pairing of electrons in doped graphene due to in-plane and out-of-plane phonons is studied. Quadratic coupling of electrons with out-of-plane phonons is considered in details, taking into account both deformation po tential and bond-stretch contributions. The order parameter of electron-electron pairing can have different structures due to four-component spinor character of electrons wave function. We consider s-wave pairing, diagonal on conduction and valence bands, but having arbitrary structure with respect to valley degree of freedom. The sign and magnitude of contribution of each phonon mode to effective electron-electron interaction turns out to depend on both the symmetry of phonon mode and the structure of the order parameter. Unconventional orbital-spin symmetry of the order parameter is found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا