ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron pairing in nanostructures driven by an oscillating field

86   0   0.0 ( 0 )
 نشر من قبل Oleg Kibis
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف O. V. Kibis




اسأل ChatGPT حول البحث

It is shown theoretically that the confinement of an electron at a repulsive potential can exist in nanostructures subjected to a strong high-frequency electromagnetic field. As a result of the confinement, the metastable bound electron state of the repulsive potential appears. This effect can lead, particularly, to electron pairing in nanostructures containing conduction electrons with different effective masses.

قيم البحث

اقرأ أيضاً

Optical spectra of semiconductor quantum wells driven by an off-resonant oscillating field are studied theoretically. Due to the dynamical stabilization effect, the field induces the quasi-stationary electron states confined at repulsive scatterers a nd immersed into the continuum of states of conduction electrons. As a result, the Fano resonances in the spectra of interband optical transitions appear near the energies of the quasi-stationary states.
We demonstrate how virtual scattering of laser photons inside a cavity via two-photon processes can induce controllable long-range electron interactions in two-dimensional materials. We show that laser light that is red(blue)-detuned from the cavity yields attractive(repulsive) interactions, whose strength is proportional to the laser intensity. Furthermore, we find that the interactions are not screened effectively except at very low frequencies. For realistic cavity parameters, laser-induced heating of the electrons by inelastic photon scattering is suppressed and coherent electron interactions dominate. When the interactions are attractive, they cause an instability in the Cooper channel at a temperature proportional to the square root of the driving intensity. Our results provide a novel route for engineering electron interactions in a wide range of two-dimensional materials including AB-stacked bilayer graphene and the conducting interface between LaAlO3 and SrTiO3.
Magnetic skyrmion motion induced by an electric current has drawn much interest because of its application potential in next-generation magnetic memory devices. Recently, unidirectional skyrmion motion driven by an oscillating magnetic field was also demonstrated on large (20 micrometer) bubble domains with skyrmion topology. At smaller length scale which is more relevant to high-density memory devices, we here show by numerical simulation that a skyrmion of a few tens of nanometers could also be driven by high-frequency field oscillations but with the motion direction different from the tilted oscillating field direction. We found that high-frequency field for small size skyrmions could excite skyrmion resonant modes and that a combination of different modes would result in the final skyrmion motion with a helical trajectory. Because this helical motion depends on the frequency of the field, we can control both the speed and the direction of the skyrmion motion, which is a distinguishable characteristic compared with other methods.
Observations of topological defects associated with Stone-Wales-type transformations (i.e., bond rotations) in high resolution transmission electron microscopy (HRTEM) images of carbon nanostructures are at odds with the equilibrium thermodynamics of these systems. Here, by combining aberration-corrected HRTEM experiments and atomistic simulations, we show that such defects can be formed by single electron impacts, and remarkably, at electron energies below the threshold for atomic displacements. We further study the mechanisms of irradiation-driven bond rotations, and explain why electron irradiation at moderate electron energies (sim100 keV) tends to amorphize rather than perforate graphene. We also show via simulations that Stone-Wales defects can appear in curved graphitic structures due to incomplete recombination of irradiation-induced Frenkel defects, similar to formation of Wigner-type defects in silicon.
The superconducting pairing of electrons in doped graphene due to in-plane and out-of-plane phonons is considered. It is shown that the structure of the order parameter in the valley space substantially affects conditions of the pairing. Electron-hol e pairing in graphene bilayer in the strong coupling regime is also considered. Taking into account retardation of the screened Coulomb pairing potential shows a significant competition between the electron-hole direct attraction and their repulsion due to virtual plasmons and single-particle excitations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا