ﻻ يوجد ملخص باللغة العربية
Recently, it has been proposed that a mechanism for the appearance of non-equilibrium superconductivity in a resonantly driven semiconductor with repulsive interband interactions exists.~cite{Goldstein_PRB15} The underlying microscopic model relies on the appearance of a specific fermionic dissipation mechanism and the careful simultaneous tailoring of the electronic dispersion relation and electron-electron interactions. We, instead, show that the phenomenon is rather general and does not need a special fine tuning of parameters. By considering a pair of bands with locally the same sign of concavity, we demonstrate that interband pairing arises under the natural assumption of the presence of phononic baths and radiative recombination. In light of these findings, we demonstrate how the emergence of superconductivity can be understood in terms of standard equilibrium interband BCS theory.
We demonstrate how virtual scattering of laser photons inside a cavity via two-photon processes can induce controllable long-range electron interactions in two-dimensional materials. We show that laser light that is red(blue)-detuned from the cavity
Indium Arsenide (InAs) near surface quantum wells (QWs) are ideal for the fabrication of semiconductor-superconductor heterostructures given that they allow for a strong hybridization between the two-dimensional states in the quantum well and the one
The possibility of superconducting pairing of electrons in doped graphene due to in-plane and out-of-plane phonons is studied. Quadratic coupling of electrons with out-of-plane phonons is considered in details, taking into account both deformation po
We show that a two-dimensional semiconductor with Rashba spin-orbit coupling could be driven into the second-order topological superconducting phase when a mixed-pairing state is introduced. The superconducting order we consider involves only even-pa
Ultrafast light pulses can modify the electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations,