ترغب بنشر مسار تعليمي؟ اضغط هنا

Feasible model for photo-induced interband pairing

55   0   0.0 ( 0 )
 نشر من قبل Sergio Porta
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, it has been proposed that a mechanism for the appearance of non-equilibrium superconductivity in a resonantly driven semiconductor with repulsive interband interactions exists.~cite{Goldstein_PRB15} The underlying microscopic model relies on the appearance of a specific fermionic dissipation mechanism and the careful simultaneous tailoring of the electronic dispersion relation and electron-electron interactions. We, instead, show that the phenomenon is rather general and does not need a special fine tuning of parameters. By considering a pair of bands with locally the same sign of concavity, we demonstrate that interband pairing arises under the natural assumption of the presence of phononic baths and radiative recombination. In light of these findings, we demonstrate how the emergence of superconductivity can be understood in terms of standard equilibrium interband BCS theory.



قيم البحث

اقرأ أيضاً

We demonstrate how virtual scattering of laser photons inside a cavity via two-photon processes can induce controllable long-range electron interactions in two-dimensional materials. We show that laser light that is red(blue)-detuned from the cavity yields attractive(repulsive) interactions, whose strength is proportional to the laser intensity. Furthermore, we find that the interactions are not screened effectively except at very low frequencies. For realistic cavity parameters, laser-induced heating of the electrons by inelastic photon scattering is suppressed and coherent electron interactions dominate. When the interactions are attractive, they cause an instability in the Cooper channel at a temperature proportional to the square root of the driving intensity. Our results provide a novel route for engineering electron interactions in a wide range of two-dimensional materials including AB-stacked bilayer graphene and the conducting interface between LaAlO3 and SrTiO3.
Indium Arsenide (InAs) near surface quantum wells (QWs) are ideal for the fabrication of semiconductor-superconductor heterostructures given that they allow for a strong hybridization between the two-dimensional states in the quantum well and the one s in the superconductor. In this work we present results for InAs QWs in the quantum Hall regime placed in proximity of superconducting NbTiN. We observe a negative downstream resistance with a corresponding reduction of Hall (upstream) resistance. We analyze the experimental data using the Landauer-B{u}ttiker formalism, generalized to allow for Andreev reflection processes. Our analysis is consistent with a lower-bound for the averaged Andreev conversion of about 15%. We attribute the high efficiency of Andreev conversion in our devices to the large transparency of the InAs/NbTiN interface and the consequent strong hybridization of the QH edge modes with the states in the superconductor.
The possibility of superconducting pairing of electrons in doped graphene due to in-plane and out-of-plane phonons is studied. Quadratic coupling of electrons with out-of-plane phonons is considered in details, taking into account both deformation po tential and bond-stretch contributions. The order parameter of electron-electron pairing can have different structures due to four-component spinor character of electrons wave function. We consider s-wave pairing, diagonal on conduction and valence bands, but having arbitrary structure with respect to valley degree of freedom. The sign and magnitude of contribution of each phonon mode to effective electron-electron interaction turns out to depend on both the symmetry of phonon mode and the structure of the order parameter. Unconventional orbital-spin symmetry of the order parameter is found.
169 - Xiaoyu Zhu 2018
We show that a two-dimensional semiconductor with Rashba spin-orbit coupling could be driven into the second-order topological superconducting phase when a mixed-pairing state is introduced. The superconducting order we consider involves only even-pa rity components and meanwhile breaks time-reversal symmetry. As a result, each corner of a square-shaped Rashba semiconductor would host one single Majorana zero mode in the second-order nontrivial phase. Starting from edge physics, we are able to determine the phase boundaries accurately. A simple criterion for the second-order phase is further established, which concerns the relative position between Fermi surfaces and nodal points of the superconducting order parameter. In the end, we propose two setups that may bring this mixed-pairing state into the Rashba semiconductor, followed by a brief discussion on the experimental feasibility of the two platforms.
153 - S. Gerber , K. W. Kim , Y. Zhang 2014
Ultrafast light pulses can modify the electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins, and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved x-ray scattering to measure the lattice dynamics of photo-excited BaFe2As2. Upon optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A1g mode that modulates the Fe-As-Fe bond angle. We directly quantify the coherent lattice dynamics and show that even a small photo-induced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can generally be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands near the Fermi level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا