ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of Silicon Photomultiplier Radiation Hardness with Proton Beam from the JULIC Cyclotron

71   0   0.0 ( 0 )
 نشر من قبل Tamer Tolba Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we study the performance of silicon photomultiplier (SiPM) light sensors after exposure to the JULIC cyclotron proton beam, of energy $sim$ 39 MeV, relative to their performance before exposure. The SiPM devices used in this study show a significant change in their behavior and downward shift of their breakdown voltage by as much as $sim$ 0.4$pm$0.1 V. Single photon measurements appear to be no longer possible for the SiPMs under study after exposure to a dose of $sim$ 0.2 Gy (corresponding to an integrated proton flux of $sim$$phi_{p}$=1.06x10$^{8}$ p/cm$^{2}$). No visible damage to the surface of the devices was caused by the exposure.



قيم البحث

اقرأ أيضاً

We report radiation hardness tests performed at the Frascati Neutron Generator on silicon Photo-Multipliers, semiconductor photon detectors built from a square matrix of avalanche photo-diodes on a silicon substrate. Several samples from different ma nufacturers have been irradiated integrating up to 7x10^10 1-MeV-equivalent neutrons per cm^2. Detector performances have been recorded during the neutron irradiation and a gradual deterioration of their properties was found to happen already after an integrated fluence of the order of 10^8 1-MeV-equivalent neutrons per cm^2.
Radiation hardness is an important requirement for solid state readout devices operating in high radiation environments common in particle physics experiments. The MEGII experiment, at PSI, Switzerland, investigates the forbidden decay $mu^+ to mathr m{e}^+ gamma$. Exploiting the most intense muon beam of the world. A significant flux of non-thermal neutrons (kinetic energy $E_kgeq 0.5 ~MeV$) is present in the experimental hall produced along the beamline and in the hall itself. We present the effects of neutron fluxes comparable to the MEGII expected doses on several Silicon PhotoMulitpliers (SiPMs). The tested models are: AdvanSiD ASD-NUV3S-P50 (used in MEGII experiment), AdvanSiD ASD-NUV3S-P40, AdvanSiD ASD-RGB3S-P40, Hamamatsu and Excelitas C30742-33-050-X. The neutron source is the thermal Sub-critical Multiplication complex (SM1) moderated with water, located at the University of Pavia (Italy). We report the change of SiPMs most important electric parameters: dark current, dark pulse frequency, gain, direct bias resistance, as a function of the integrated neutron fluency.
The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron Radiation Emission Spectroscopy (CRES) is a precision spectrographic technique that can probe much o f the unexplored neutrino mass range with $mathcal{O}({rm eV})$ resolution. A lower bound of $m( u_e) gtrsim 9(0.1), {rm meV}$ is set by observations of neutrino oscillations, while the KATRIN Experiment - the current-generation tritium beta-decay experiment that is based on Magnetic Adiabatic Collimation with an Electrostatic (MAC-E) filter - will achieve a sensitivity of $m( u_e) lesssim 0.2,{rm eV}$. The CRES technique aims to avoid the difficulties in scaling up a MAC-E filter-based experiment to achieve a lower mass sensitivity. In this paper we review the current status of the CRES technique and describe Project 8, a phased absolute neutrino mass experiment that has the potential to reach sensitivities down to $m( u_e) lesssim 40,{rm meV}$ using an atomic tritium source.
The development of instrumentation to be operated in high-radiation environments is one of the main challenges in fundamental research. Besides space and nuclear applications, particle physics experiments also need radiation-hard devices. The focus o f this paper is a new irradiation facility based on the medical cyclotron located at the Bern University Hospital (Insespital), which is used as a controlled 18 MeV proton source. The adjustable beam current allows for dose rate dependent characterisation over a large dynamic range, from 0.1 to 1000 Grad per hour. The beam can be tuned so that the user can obtain the desired irradiation conditions. A complete study of the device under irradiation is possible thanks to dedicated beam monitoring systems as well as a power control system for the device under irradiation, which can be operated on-line. Further characterisations of the irradiated devices are possible thanks to a laboratory equipped with gamma spectroscopy detectors, ammeters and transient current technique setups.
Decreasing the operation temperature of a Silicon Photo-Multiplier (SiPM) leads to a drop in its dark noise. Some experiments consider cold temperatures as an option for low noise applications of SiPM. One of those is the TAO detector, which requires operation at $Tapprox -50~^circ$C. A significant dependence of the Photon Detection Efficiency (PDE) of a SiPM on different temperatures was reported with a drastic drop around this temperature. In this paper, we present studies of performance for two samples of SiPMs from Hamamatsu and AdvanSID(FBK) companies in a broad temperature range. No significant difference for the PDE was observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا