ترغب بنشر مسار تعليمي؟ اضغط هنا

State-of-the-art and prospects for intense red radiation from core-shell InGaN/GaN nanorods

111   0   0.0 ( 0 )
 نشر من قبل Evgenii Evropeitsev Mr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. A. Evropeitsev




اسأل ChatGPT حول البحث

Core-shell nanorods (NRs) with InGaN/GaN quantum wells (QWs) are promising for monolithic white light-emitting diodes and multicolor displays. Such applications, however, are still a challenge because intensity of red band is too weak as compared with blue and green ones. To clarify the problem, we have performed power and temperature dependent, as well as time-resolved measurements of photoluminescence (PL) in NRs of different In content and diameter. These studies have shown that the dominant PL bands originate from nonpolar and semipolar QWs, while a broad yellow-red band arises mostly from defects in the GaN core. Intensity of red emission from the polar QWs at the NR tip is fatally small. Our calculation of electromagnetic field distribution inside the NRs shows a low density of photon states in the tip that suppresses the red radiation. We suggest a design of hybrid NRs, in which polar QWs, located inside the GaN core, are pumped by UV-blue radiation of nonpolar QWs. Possibilities of radiative recombination rate enhancement by means of the Purcell effect are discussed.



قيم البحث

اقرأ أيضاً

We demonstrate a series of InGaN/GaN double quantum well nanostructure elements. We grow a layer of 2 {mu}m undoped GaN template on top of a (0001)-direction sapphire substrate. A 100 nm SiO2 thin film is deposited on top as a masking pattern layer. This layer is then covered with a 300 nm aluminum layer as the anodic aluminum oxide (AAO) hole pattern layer. After oxalic acid etching, we transfer the hole pattern from the AAO layer to the SiO2 layer by reactive ion etching. Lastly, we utilize metal-organic chemical vapor deposition to grow GaN nanorods approximately 1.5 {mu}m in size. We then grow two layers of InGaN/GaN double quantum wells on the semi-polar face of the GaN nanorod substrate under different temperatures. We then study the characteristics of the InGaN/GaN quantum wells formed on the semi-polar faces of GaN nanorods. We report the following findings from our study: first, using SiO2 with repeating hole pattern, we are able to grow high-quality GaN nanorods with diameters of approximately 80-120 nm; second, photoluminescence (PL) measurements enable us to identify Fabry-Perot effect from InGaN/GaN quantum wells on the semi-polar face. We calculate the quantum wells cavity thickness with obtained PL measurements. Lastly, high resolution TEM images allow us to study the lattice structure characteristics of InGaN/GaN quantum wells on GaN nanorod and identify the existence of threading dislocations in the lattice structure that affects the GaN nanorods growth mechanism.
High resolution coherent nonlinear optical spectroscopy of an ensemble of red-emitting InGaN quantum dots in GaN nanowires is reported. The data show a pronounced atom-like interaction between resonant laser fields and quantum dot excitons at low tem perature that is difficult to observe in the linear absorption spectrum due to inhomogeneous broadening from indium fluctuation effects. We find that the nonlinear signal persists strongly at room temperature. The robust atom-like room temperature response indicates the possibility that this material could serve as the platform for proposed excitonic based applications without the need of cryogenics.
The electronic properties of heterojunction electron gases formed in GaN/AlGaN core/shell nanowires with hexagonal and triangular cross-sections are studied theoretically. We show that at nanoscale dimensions, the non-polar hexagonal system exhibits degenerate quasi-one-dimensional electron gases at the hexagon corners, which transition to a core-centered electron gas at lower doping. In contrast, polar triangular core/shell nanowires show either a non-degenerate electron gas on the polar face or a single quasi-one-dimensional electron gas at the corner opposite the polar face, depending on the termination of the polar face. More generally, our results indicate that electron gases in closed nanoscale systems are qualitatively different from their bulk counterparts.
187 - M. I. Dyakonov 2012
This is a brief review of the experimental and theoretical quantum computing. The hopes for eventually building a useful quantum computer rely entirely on the so-called threshold theorem. In turn, this theorem is based on a number of assumptions, tre ated as axioms, i.e. as being satisfied exactly. Since in reality this is not possible, the prospects of scalable quantum computing will remain uncertain until the required precision, with which these assumptions should be approached, is established. Some related sociological aspects are also discussed. .
InxGa1-xN disks in GaN nanowires (DINWs) have emerged as a viable technology for on-chip tunable visible spectrum emission without the use of a phosphor. Here we present a study of the optical emission and absorption dynamics in DINWs that incorporat es the important role of background disorder states. We show that the optical emission in the system is dominated by quantum-confined excitons, however the exci-tons are coupled to a large density of background disorder states. Rapid non-radiative decay (compared to other decay rates such as spontaneous emission) from disorder states into excitons is observed after optical excitation of our sample, which can be advantageous for increasing the brightness of the system in future design efforts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا