ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanostructure analysis of InGaN/GaN quantum wells based on semi-polar-faced GaN nanorods

85   0   0.0 ( 0 )
 نشر من قبل Yu-Sheng Huang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a series of InGaN/GaN double quantum well nanostructure elements. We grow a layer of 2 {mu}m undoped GaN template on top of a (0001)-direction sapphire substrate. A 100 nm SiO2 thin film is deposited on top as a masking pattern layer. This layer is then covered with a 300 nm aluminum layer as the anodic aluminum oxide (AAO) hole pattern layer. After oxalic acid etching, we transfer the hole pattern from the AAO layer to the SiO2 layer by reactive ion etching. Lastly, we utilize metal-organic chemical vapor deposition to grow GaN nanorods approximately 1.5 {mu}m in size. We then grow two layers of InGaN/GaN double quantum wells on the semi-polar face of the GaN nanorod substrate under different temperatures. We then study the characteristics of the InGaN/GaN quantum wells formed on the semi-polar faces of GaN nanorods. We report the following findings from our study: first, using SiO2 with repeating hole pattern, we are able to grow high-quality GaN nanorods with diameters of approximately 80-120 nm; second, photoluminescence (PL) measurements enable us to identify Fabry-Perot effect from InGaN/GaN quantum wells on the semi-polar face. We calculate the quantum wells cavity thickness with obtained PL measurements. Lastly, high resolution TEM images allow us to study the lattice structure characteristics of InGaN/GaN quantum wells on GaN nanorod and identify the existence of threading dislocations in the lattice structure that affects the GaN nanorods growth mechanism.



قيم البحث

اقرأ أيضاً

We have mesured the carrier recombination dynamics in InGaN/GaN multiple quantum wells over an unprecedented range in intensity. We find that at times shorter than 30,ns, they follow an exponential form, and a power law at times longer than 1,$mu$s. To explain these biphasic dynamics, we propose a simple three-level model where a charge-separated state interplays with the radiative state through charge transfer following a tunneling mechanism. We show how the distribution of distances in charge-separated states controls the dynamics at long time. Our results imply that charge recombination happens on nearly-isolated clusters of localization centers.
Localization lengths of the electrons and holes in InGaN/GaN quantum wells have been calculated using numerical solutions of the effective mass Schrodinger equation. We have treated the distribution of indium atoms as random and found that the result ant fluctuations in alloy concentration can localize the carriers. By using a locally varying indium concentration function we have calculated the contribution to the potential energy of the carriers from band gap fluctuations, the deformation potential and the spontaneous and piezoelectric fields. We have considered the effect of well width fluctuations and found that these contribute to electron localization, but not to hole localization. We also simulate low temperature photoluminescence spectra and find good agreement with experiment.
We present a detailed theoretical analysis of the electronic and optical properties of c-plane InGaN/GaN quantum well structures with In contents ranging from 5% to 25%. Special attention is paid to the relevance of alloy induced carrier localization effects to the green gap problem. Studying the localization length and electron-hole overlaps at low and elevated temperatures, we find alloy-induced localization effects are crucial for the accurate description of InGaN quantum wells across the range of In content studied. However, our calculations show very little change in the localization effects when moving from the blue to the green spectral regime; i.e. when the internal quantum efficiency and wall plug efficiencies reduce sharply, for instance, the in-plane carrier separation due to alloy induced localization effects change weakly. We conclude that other effects, such as increased defect densities, are more likely to be the main reason for the green gap problem. This conclusion is further supported by our finding that the electron localization length is large, when compared to that of the holes, and changes little in the In composition range of interest for the green gap problem. Thus electrons may become increasingly susceptible to an increased (point) defect density in green emitters and as a consequence the nonradiative recombination rate may increase.
164 - Lai Wang , Xiao Meng , Di Yang 2016
V-pit-defects in GaN-based light-emitting diodes induced by dislocations are considered beneficial to electroluminescence because they relax the strain in InGaN quantum wells and also enhance the hole lateral injection through sidewall of V-pits. In this paper, regularly arranged V-pits are formed on c-plane GaN grown by metal organic vapor phase epitaxy on conventional c-plane cone-patterned sapphire substrates. The size of V-pits and area of flat GaN can be adjusted by changing growth temperature. Five pairs of InGaN/GaN multi-quantumwell and also a light-emitting diode structure are grown on this V-pit-shaped GaN. Two peaks around 410 nm and 450 nm appearing in both photoluminescence and cathodeluminescence spectra are from the semipolar InGaN/GaN multi-quantum-well on sidewalls of V-pits and cplane InGaN/GaN multi-quantum-well, respectively. In addition, dense bright spots can be observed on the surface of light-emitting diode when it works under small injection current, which are believed owing to the enhanced hole injection around V-pits.
110 - E. A. Evropeitsev 2020
Core-shell nanorods (NRs) with InGaN/GaN quantum wells (QWs) are promising for monolithic white light-emitting diodes and multicolor displays. Such applications, however, are still a challenge because intensity of red band is too weak as compared wit h blue and green ones. To clarify the problem, we have performed power and temperature dependent, as well as time-resolved measurements of photoluminescence (PL) in NRs of different In content and diameter. These studies have shown that the dominant PL bands originate from nonpolar and semipolar QWs, while a broad yellow-red band arises mostly from defects in the GaN core. Intensity of red emission from the polar QWs at the NR tip is fatally small. Our calculation of electromagnetic field distribution inside the NRs shows a low density of photon states in the tip that suppresses the red radiation. We suggest a design of hybrid NRs, in which polar QWs, located inside the GaN core, are pumped by UV-blue radiation of nonpolar QWs. Possibilities of radiative recombination rate enhancement by means of the Purcell effect are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا