ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of Disorder State Coupling to Excitons in InGaN Disks in GaN Nanowires

61   0   0.0 ( 0 )
 نشر من قبل Cameron Nelson
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

InxGa1-xN disks in GaN nanowires (DINWs) have emerged as a viable technology for on-chip tunable visible spectrum emission without the use of a phosphor. Here we present a study of the optical emission and absorption dynamics in DINWs that incorporates the important role of background disorder states. We show that the optical emission in the system is dominated by quantum-confined excitons, however the exci-tons are coupled to a large density of background disorder states. Rapid non-radiative decay (compared to other decay rates such as spontaneous emission) from disorder states into excitons is observed after optical excitation of our sample, which can be advantageous for increasing the brightness of the system in future design efforts.



قيم البحث

اقرأ أيضاً

High resolution coherent nonlinear optical spectroscopy of an ensemble of red-emitting InGaN quantum dots in GaN nanowires is reported. The data show a pronounced atom-like interaction between resonant laser fields and quantum dot excitons at low tem perature that is difficult to observe in the linear absorption spectrum due to inhomogeneous broadening from indium fluctuation effects. We find that the nonlinear signal persists strongly at room temperature. The robust atom-like room temperature response indicates the possibility that this material could serve as the platform for proposed excitonic based applications without the need of cryogenics.
110 - E. A. Evropeitsev 2020
Core-shell nanorods (NRs) with InGaN/GaN quantum wells (QWs) are promising for monolithic white light-emitting diodes and multicolor displays. Such applications, however, are still a challenge because intensity of red band is too weak as compared wit h blue and green ones. To clarify the problem, we have performed power and temperature dependent, as well as time-resolved measurements of photoluminescence (PL) in NRs of different In content and diameter. These studies have shown that the dominant PL bands originate from nonpolar and semipolar QWs, while a broad yellow-red band arises mostly from defects in the GaN core. Intensity of red emission from the polar QWs at the NR tip is fatally small. Our calculation of electromagnetic field distribution inside the NRs shows a low density of photon states in the tip that suppresses the red radiation. We suggest a design of hybrid NRs, in which polar QWs, located inside the GaN core, are pumped by UV-blue radiation of nonpolar QWs. Possibilities of radiative recombination rate enhancement by means of the Purcell effect are discussed.
We derive an energy-dependent decay-time distribution function from the multi-exponential decay of the ensemble photoluminescence (PL) of InGaN/GaN quantum dots (QDs), which agrees well with recently published single-QD time-resolved PL measurements. Using eight-band k.p modelling, we show that the built-in piezo- and pyroelectric fields within the QDs cause a sensitive dependence of the radiative lifetimes on the exact QD geometry and composition. Moreover, the radiative lifetimes also depend heavily on the composition of the direct surrounding of the QDs. A broad lifetime distribution occurs even for moderate variations of the QD structure. Thus, for unscreened fields a multi-exponential decay of the ensemble PL is generally expected in this material system.
Higher-order topological insulators are a recently discovered class of materials that can possess zero-dimensional localized states regardless of the dimension of the lattice. Here, we experimentally demonstrate that the topological corner-localized modes of higher-order topological insulators can be symmetry protected bound states in the continuum; these states do not hybridize with the surrounding bulk states of the lattice even in the absence of a bulk bandgap. As such, this class of structures has potential applications in confining and controlling light in systems that do not support a complete photonic bandgap.
The optical properties of a stack of GaN/AlN quantum discs (QDiscs) in a GaN nanowire have been studied by spatially resolved cathodoluminescence (CL) at the nanoscale (nanoCL) using a Scanning Transmission Electron Microscope (STEM) operating in spe ctrum imaging mode. For the electron beam excitation in the QDisc region, the luminescence signal is highly localized with spatial extension as low as 5 nm due to the high band gap difference between GaN and AlN. This allows for the discrimination between the emission of neighbouring QDiscs and for evidencing the presence of lateral inclusions, about 3 nm thick and 20 nm long rods (quantum rods, QRods), grown unintentionally on the nanowire sidewalls. These structures, also observed by STEM dark-field imaging, are proven to be optically active in nanoCL, emitting at similar, but usually shorter, wavelengths with respect to most QDiscs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا