ﻻ يوجد ملخص باللغة العربية
Quantum mechanical systems, whose degrees of freedom are so-called su(2)_k anyons, form a bridge between ordinary SU(2) spin systems and systems of interacting non-Abelian anyons. Such a connection can be made for arbitrary spin-S systems, and we explicitly discuss spin-1/2 and spin-1 systems. Anyonic spin-1/2 chains exhibit a topological protection mechanism that stabilizes their gapless ground states and which vanishes only in the limit (k to infinity) of the ordinary spin-1/2 Heisenberg chain. For anyonic spin-1 chains we find their phase diagrams to closely mirror the one of the biquadratic SU(2) spin-1 chain. Our results describe at the same time nucleation of different 2D topological quantum fluids within a `parent non-Abelian quantum Hall state, arising from a macroscopic occupation of localized, interacting anyons. The edge states between the `nucleated and the `parent liquids are neutral, and correspond precisely to the gapless modes of the anyonic chains.
We study effectively one-dimensional systems that emerge at the edge of a two-dimensional topologically ordered state, or at the boundary between two topologically ordered states. We argue that anyons of the bulk are associated with emergent symmetri
We investigate theoretically the quantum phase transition (QPT) between the one-channel Kondo (1CK) and two-channel Kondo (2CK) fixed points in a quantum dot coupled to helical edge states of interacting 2D topological insulators (2DTI) with Luttinge
In addition to novel surface states, topological insulators can also exhibit robust gapless states at crystalline defects. Step edges constitute a class of common defects on the surface of crystals. In this work we establish the topological nature of
Collective states of interacting non-Abelian anyons have recently been studied mostly in the context of certain fractional quantum Hall states, such as the Moore-Read state proposed to describe the physics of the quantum Hall plateau at filling fract
Recently, it has been found that there exist symmetry-protected topological phases of fermions, which have no realizations in non-interacting fermionic systems or bosonic models. We study the edge states of such an intrinsically interacting fermionic