ﻻ يوجد ملخص باللغة العربية
Forty years ago, Robert May questioned a central belief in ecology by proving that sufficiently large or complex ecological networks have probability of persisting close to zero. To prove this point, he analyzed large networks in which species interact at random. However, in natural systems pairs of species have well-defined interactions (e.g., predator-prey, mutualistic or competitive). Here we extend Mays results to these relationships and find remarkable differences between predator-prey interactions, which increase stability, and mutualistic and competitive, which are destabilizing. We provide analytic stability criteria for all cases. These results have broad applicability in ecology. For example, we show that, surprisingly, the probability of stability for predator-prey networks is decreased when we impose realistic food web structure or we introduce a large preponderance of weak interactions. Similarly, stability is negatively impacted by nestedness in bipartite mutualistic networks.
In his seminal work in the 1970s Robert May suggested that there was an upper limit to the number of species that could be sustained in stable equilibrium by an ecosystem. This deduction was at odds with both intuition and the observed complexity of
Niche and neutral theory are two prevailing, yet much debated, ideas in ecology proposed to explain the patterns of biodiversity. Whereas niche theory emphasizes selective differences between species and interspecific interactions in shaping the comm
We use dynamical generating functionals to study the stability and size of communities evolving in Lotka-Volterra systems with random interaction coefficients. The size of the eco-system is not set from the beginning. Instead, we start from a set of
Explaining biodiversity in nature is a fundamental problem in ecology. An outstanding challenge is embodied in the so-called Competitive Exclusion Principle: two species competing for one limiting resource cannot coexist at constant population densit
How large ecosystems can create and maintain the remarkable biodiversity we see in nature is probably one of the biggest open question in science, attracting attention from different fields, from Theoretical Ecology to Mathematics and Physics. In thi