ﻻ يوجد ملخص باللغة العربية
We give a partial solution to a long-standing open problem in the theory of quantum groups, namely we prove that all finite-dimensional representations of a wide class of locally compact quantum groups factor through matrix quantum groups (Admissibility Conjecture for quantum group representations). We use this to study Kazhdans Property (T) for quantum groups with non-trivial scaling group, strengthening and generalising some of the earlier results obtained by Fima, Kyed and So{l}tan, Chen and Ng, Daws, Skalski and Viselter, and Brannan and Kerr. Our main results are: (i) All finite-dimensional unitary representations of locally compact quantum groups which are either unimodular or arise through a special bicrossed product construction are admissible. (ii) A generalisation of a theorem of Wang which characterises Property (T) in terms of isolation of finite-dimensional irreducible representations in the spectrum. (iii) A very short proof of the fact that quantum groups with Property (T) are unimodular. (iv) A generalisation of a quantum version of a theorem of Bekka--Valette proven earlier for quantum groups with trivial scaling group, which characterises Property (T) in terms of non-existence of almost invariant vectors for weakly mixing representations. (v) A generalisation of a quantum version of Kerr-Pichot theorem, proven earlier for quantum groups with trivial scaling group, which characterises Property (T) in terms of denseness properties of weakly mixing representations.
We show that for a large class $mathcal{W}$ of Coxeter groups the following holds: Given a group $W_Gamma$ in $mathcal{W}$, the automorphism group ${rm Aut}(W_Gamma)$ virtually surjects onto $W_Gamma$. In particular, the group ${rm Aut}(G_Gamma)$ is
We give a decomposition of the equivariant Kasparov category for discrete quantum group with torsions. As an outcome, we show that the crossed product by a discrete quantum group in a certain class preserves the UCT. We then show that quasidiagonalit
The notion of strong 1-boundedness for finite von Neumann algebras was introduced by Jung. This framework provided a free probabilistic approach to study rigidity properties and classification of finite von Neumann algebras. In this paper, we prove t
Let R be a finitely generated commutative ring with 1, let A be an indecomposable 2-spherical generalized Cartan matrix of size at least 2 and M=M(A) the largest absolute value of a non-diagonal entry of A. We prove that there exists an integer n=n(A
We show that the automorphism group of a graph product of finite groups $Aut(G_Gamma)$ has Kazhdans property (T) if and only if $Gamma$ is a complete graph.