We show that the automorphism group of a graph product of finite groups $Aut(G_Gamma)$ has Kazhdans property (T) if and only if $Gamma$ is a complete graph.
We show that for a large class $mathcal{W}$ of Coxeter groups the following holds: Given a group $W_Gamma$ in $mathcal{W}$, the automorphism group ${rm Aut}(W_Gamma)$ virtually surjects onto $W_Gamma$. In particular, the group ${rm Aut}(G_Gamma)$ is
virtually indicable and therefore does not satisfy Kazhdans property (T). Moreover, if $W_Gamma$ is not virtually abelian, then the group ${rm Aut}(W_Gamma)$ is large.
Given a finite simplicial graph $Gamma=(V,E)$ with a vertex-labelling $varphi:Vrightarrowleft{text{non-trivial finitely generated groups}right}$, the graph product $G_Gamma$ is the free product of the vertex groups $varphi(v)$ with added relations th
at imply elements of adjacent vertex groups commute. For a quasi-isometric invariant $mathcal{P}$, we are interested in understanding under which combinatorial conditions on the graph $Gamma$ the graph product $G_Gamma$ has property $mathcal{P}$. In this article our emphasis is on number of ends of a graph product $G_Gamma$. In particular, we obtain a complete characterization of number of ends of a graph product of finitely generated groups.
Let R be a finitely generated commutative ring with 1, let A be an indecomposable 2-spherical generalized Cartan matrix of size at least 2 and M=M(A) the largest absolute value of a non-diagonal entry of A. We prove that there exists an integer n=n(A
) such that the Kac-Moody group G_A(R) has property (T) whenever R has no proper ideals of index less than n and all positive integers less than or equal to M are invertible in R.
We show that if $G$ is a group and $G$ has a graph-product decomposition with finitely-generated abelian vertex groups, then $G$ has two canonical decompositions as a graph product of groups: a unique decomposition in which each vertex group is a dir
ectly-indecomposable cyclic group, and a unique decomposition in which each vertex group is a finitely-generated abelian group and the graph satisfies the $T_0$ property. Our results build on results by Droms, Laurence and Radcliffe.