ﻻ يوجد ملخص باللغة العربية
The ability to harness light-matter interactions at the few-photon level plays a pivotal role in quantum technologies. Single photons - the most elementary states of light - can be generated on-demand in atomic and solid state emitters. Two-photon states are also key quantum assets, but achieving them in individual emitters is challenging because their generation rate is much slower than competing one-photon processes. We demonstrate that atomically thin plasmonic nanostructures can harness two-photon spontaneous emission, resulting in giant far-field two-photon production, a wealth of resonant modes enabling tailored photonic and plasmonic entangled states, and plasmon-assisted single-photon creation orders of magnitude more efficient than standard one-photon emission. We unravel the two-photon spontaneous emission channels and show that their spectral line-shapes emerge from an intricate interplay between Fano and Lorentzian resonances. Enhanced two-photon spontaneous emission in two-dimensional nanostructures paves the way to an alternative efficient source of light-matter entanglement for on-chip quantum information processing and free-space quantum communications.
As a high-order quantum transition, two-photon emission has an extremely low occurrence rate compared to one-photon emission, thus having been considered a forbidden process. Here, we propose a scheme that allows ultrafast two-photon emission, levera
Deep subwavelength integration of high-definition plasmonic nanostructures is of key importance for the development of future optical nanocircuitry for high-speed communication, quantum computation and lab-on-a-chip applications. So far the experimen
Developments in quantum technologies lead to new applications that require radiation sources with specific photon statistics. A widely used Poissonian statistics are easily produced by lasers; however, some applications require super- or sub-Poissoni
Nanofabrication of photonic components based on dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) excited by single nitrogen vacancy (NV) centers in nanodiamonds is demonstrated. DLSPPW circuits are built around NV containing nanodiamo
We demonstrate a fundamental breakdown of the photonic spontaneous emission (SE) formula derived from Fermis golden rule, in absorptive and amplifying media, where one assumes the SE rate scales with the local photon density of states, an approach of