ترغب بنشر مسار تعليمي؟ اضغط هنا

Balance Between Efficient and Effective Learning: Dense2Sparse Reward Shaping for Robot Manipulation with Environment Uncertainty

65   0   0.0 ( 0 )
 نشر من قبل Yongle Luo
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Efficient and effective learning is one of the ultimate goals of the deep reinforcement learning (DRL), although the compromise has been made in most of the time, especially for the application of robot manipulations. Learning is always expensive for robot manipulation tasks and the learning effectiveness could be affected by the system uncertainty. In order to solve above challenges, in this study, we proposed a simple but powerful reward shaping method, namely Dense2Sparse. It combines the advantage of fast convergence of dense reward and the noise isolation of the sparse reward, to achieve a balance between learning efficiency and effectiveness, which makes it suitable for robot manipulation tasks. We evaluated our Dense2Sparse method with a series of ablation experiments using the state representation model with system uncertainty. The experiment results show that the Dense2Sparse method obtained higher expected reward compared with the ones using standalone dense reward or sparse reward, and it also has a superior tolerance of system uncertainty.

قيم البحث

اقرأ أيضاً

A fundamental issue in reinforcement learning algorithms is the balance between exploration of the environment and exploitation of information already obtained by the agent. Especially, exploration has played a critical role for both efficiency and e fficacy of the learning process. However, Existing works for exploration involve task-agnostic design, that is performing well in one environment, but be ill-suited to another. To the purpose of learning an effective and efficient exploration policy in an automated manner. We formalized a feasible metric for measuring the utility of exploration based on counterfactual ideology. Based on that, We proposed an end-to-end algorithm to learn exploration policy by meta-learning. We demonstrate that our method achieves good results compared to previous works in the high-dimensional control tasks in MuJoCo simulator.
67 - Tiancheng Yu , Suvrit Sra 2019
A Markov Decision Process (MDP) is a popular model for reinforcement learning. However, its commonly used assumption of stationary dynamics and rewards is too stringent and fails to hold in adversarial, nonstationary, or multi-agent problems. We stud y an episodic setting where the parameters of an MDP can differ across episodes. We learn a reliable policy of this potentially adversarial MDP by developing an Adversarial Reinforcement Learning (ARL) algorithm that reduces our MDP to a sequence of emph{adversarial} bandit problems. ARL achieves $O(sqrt{SATH^3})$ regret, which is optimal with respect to $S$, $A$, and $T$, and its dependence on $H$ is the best (even for the usual stationary MDP) among existing model-free methods.
Reward shaping is an effective technique for incorporating domain knowledge into reinforcement learning (RL). Existing approaches such as potential-based reward shaping normally make full use of a given shaping reward function. However, since the tra nsformation of human knowledge into numeric reward values is often imperfect due to reasons such as human cognitive bias, completely utilizing the shaping reward function may fail to improve the performance of RL algorithms. In this paper, we consider the problem of adaptively utilizing a given shaping reward function. We formulate the utilization of shaping rewards as a bi-level optimization problem, where the lower level is to optimize policy using the shaping rewards and the upper level is to optimize a parameterized shaping weight function for true reward maximization. We formally derive the gradient of the expected true reward with respect to the shaping weight function parameters and accordingly propose three learning algorithms based on different assumptions. Experiments in sparse-reward cartpole and MuJoCo environments show that our algorithms can fully exploit beneficial shaping rewards, and meanwhile ignore unbeneficial shaping rewards or even transform them into beneficial ones.
83 - E. M. Hahn , M. Perez , S. Schewe 2020
Recently, successful approaches have been made to exploit good-for-MDPs automata (Buchi automata with a restricted form of nondeterminism) for model free reinforcement learning, a class of automata that subsumes good for games automata and the most w idespread class of limit deterministic automata. The foundation of using these Buchi automata is that the Buchi condition can, for good-for-MDP automata, be translated to reachability. The drawback of this translation is that the rewards are, on average, reaped very late, which requires long episodes during the learning process. We devise a new reward shaping approach that overcomes this issue. We show that the resulting model is equivalent to a discounted payoff objective with a biased discount that simplifies and improves on prior work in this direction.
82 - Danfei Xu , Misha Denil 2019
Learning reward functions from data is a promising path towards achieving scalable Reinforcement Learning (RL) for robotics. However, a major challenge in training agents from learned reward models is that the agent can learn to exploit errors in the reward model to achieve high reward behaviors that do not correspond to the intended task. These reward delusions can lead to unintended and even dangerous behaviors. On the other hand, adversarial imitation learning frameworks tend to suffer the opposite problem, where the discriminator learns to trivially distinguish agent and expert behavior, resulting in reward models that produce low reward signal regardless of the input state. In this paper, we connect these two classes of reward learning methods to positive-unlabeled (PU) learning, and we show that by applying a large-scale PU learning algorithm to the reward learning problem, we can address both the reward under- and over-estimation problems simultaneously. Our approach drastically improves both GAIL and supervised reward learning, without any additional assumptions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا