ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Policy Learning for Non-Stationary MDPs under Adversarial Manipulation

68   0   0.0 ( 0 )
 نشر من قبل Tiancheng Yu
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

A Markov Decision Process (MDP) is a popular model for reinforcement learning. However, its commonly used assumption of stationary dynamics and rewards is too stringent and fails to hold in adversarial, nonstationary, or multi-agent problems. We study an episodic setting where the parameters of an MDP can differ across episodes. We learn a reliable policy of this potentially adversarial MDP by developing an Adversarial Reinforcement Learning (ARL) algorithm that reduces our MDP to a sequence of emph{adversarial} bandit problems. ARL achieves $O(sqrt{SATH^3})$ regret, which is optimal with respect to $S$, $A$, and $T$, and its dependence on $H$ is the best (even for the usual stationary MDP) among existing model-free methods.

قيم البحث

اقرأ أيضاً

We consider the problem of learning in episodic finite-horizon Markov decision processes with an unknown transition function, bandit feedback, and adversarial losses. We propose an efficient algorithm that achieves $mathcal{tilde{O}}(L|X|sqrt{|A|T})$ regret with high probability, where $L$ is the horizon, $|X|$ is the number of states, $|A|$ is the number of actions, and $T$ is the number of episodes. To the best of our knowledge, our algorithm is the first to ensure $mathcal{tilde{O}}(sqrt{T})$ regret in this challenging setting; in fact it achieves the same regret bound as (Rosenberg & Mansour, 2019a) that considers an easier setting with full-information feedback. Our key technical contributions are two-fold: a tighter confidence set for the transition function, and an optimistic loss estimator that is inversely weighted by an $textit{upper occupancy bound}$.
124 - Tiancheng Jin , Haipeng Luo 2020
This work studies the problem of learning episodic Markov Decision Processes with known transition and bandit feedback. We develop the first algorithm with a ``best-of-both-worlds guarantee: it achieves $mathcal{O}(log T)$ regret when the losses are stochastic, and simultaneously enjoys worst-case robustness with $tilde{mathcal{O}}(sqrt{T})$ regret even when the losses are adversarial, where $T$ is the number of episodes. More generally, it achieves $tilde{mathcal{O}}(sqrt{C})$ regret in an intermediate setting where the losses are corrupted by a total amount of $C$. Our algorithm is based on the Follow-the-Regularized-Leader method from Zimin and Neu (2013), with a novel hybrid regularizer inspired by recent works of Zimmert et al. (2019a, 2019b) for the special case of multi-armed bandits. Crucially, our regularizer admits a non-diagonal Hessian with a highly complicated inverse. Analyzing such a regularizer and deriving a particular self-bounding regret guarantee is our key technical contribution and might be of independent interest.
Multi-objective Neural Architecture Search (NAS) aims to discover novel architectures in the presence of multiple conflicting objectives. Despite recent progress, the problem of approximating the full Pareto front accurately and efficiently remains c hallenging. In this work, we explore the novel reinforcement learning (RL) based paradigm of non-stationary policy gradient (NPG). NPG utilizes a non-stationary reward function, and encourages a continuous adaptation of the policy to capture the entire Pareto front efficiently. We introduce two novel reward functions with elements from the dominant paradigms of scalarization and evolution. To handle non-stationarity, we propose a new exploration scheme using cosine temperature decay with warm restarts. For fast and accurate architecture evaluation, we introduce a novel pre-trained shared model that we continuously fine-tune throughout training. Our extensive experimental study with various datasets shows that our framework can approximate the full Pareto front well at fast speeds. Moreover, our discovered cells can achieve supreme predictive performance compared to other multi-objective NAS methods, and other single-objective NAS methods at similar network sizes. Our work demonstrates the potential of NPG as a simple, efficient, and effective paradigm for multi-objective NAS.
In data stream mining, predictive models typically suffer drops in predictive performance due to concept drift. As enough data representing the new concept must be collected for the new concept to be well learnt, the predictive performance of existin g models usually takes some time to recover from concept drift. To speed up recovery from concept drift and improve predictive performance in data stream mining, this work proposes a novel approach called Multi-sourcE onLine TrAnsfer learning for Non-statIonary Environments (Melanie). Melanie is the first approach able to transfer knowledge between multiple data streaming sources in non-stationary environments. It creates several sub-classifiers to learn different aspects from different source and target concepts over time. The sub-classifiers that match the current target concept well are identified, and used to compose an ensemble for predicting examples from the target concept. We evaluate Melanie on several synthetic data streams containing different types of concept drift and on real world data streams. The results indicate that Melanie can deal with a variety drifts and improve predictive performance over existing data stream learning algorithms by making use of multiple sources.
Off-policy learning is a framework for evaluating and optimizing policies without deploying them, from data collected by another policy. Real-world environments are typically non-stationary and the offline learned policies should adapt to these chang es. To address this challenge, we study the novel problem of off-policy optimization in piecewise-stationary contextual bandits. Our proposed solution has two phases. In the offline learning phase, we partition logged data into categorical latent states and learn a near-optimal sub-policy for each state. In the online deployment phase, we adaptively switch between the learned sub-policies based on their performance. This approach is practical and analyzable, and we provide guarantees on both the quality of off-policy optimization and the regret during online deployment. To show the effectiveness of our approach, we compare it to state-of-the-art baselines on both synthetic and real-world datasets. Our approach outperforms methods that act only on observed context.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا