ﻻ يوجد ملخص باللغة العربية
Recent ALMA observations revealed concentric annular structures in several young class-II objects. In an attempt to produce the rings and gaps in some of these systems, they have been modeled numerically with a single embedded planet assuming a locally isothermal equation of state. This is often justified by observations targeting the irradiation-dominated outer regions of disks (approximately 100 au). We test this assumption by conducting hydrodynamics simulations of embedded planets in thin locally isothermal and radiative disks that mimic the systems HD 163296 and AS 209 in order to examine the effect of including the energy equation in a seemingly locally isothermal environment as far as planet-disk interaction is concerned. We find that modeling such disks with an ideal equation of state makes a difference in terms of the number of produced rings and the spiral arm contrast in the disk. Locally isothermal disks produce sharper annular or azimuthal features and overestimate a single planets gap-opening capabilities by producing multiple gaps. In contrast, planets in radiative disks carve a single gap for typical disk parameters. Consequently, for accurate modeling of planets with semimajor axes up to about 100 au, radiative effects should be taken into account even in seemingly locally isothermal disks. In addition, for the case of AS 209, we find that the primary gap is significantly different between locally isothermal and radiative models. Our results suggest that multiple planets are required to explain the ring-rich structures in such systems.
We carry out three-dimensional hydrodynamical simulations to study planet-disc interactions for inclined high mass planets, focusing on the discs secular evolution induced by the planet. We find that, when the planet is massive enough and the induced
We study wakes and gap opening by low mass planets in gaseous protoplanetary disks threaded by net vertical magnetic fields which drive magnetohydrodynamical (MHD) turbulence through the magnetorotational instabilty (MRI), using three dimensional sim
Planets form in young circumstellar disks called protoplanetary disks. However, it is still difficult to catch planet formation in-situ. Nevertheless, from recent ALMA/SPHERE data, encouraging evidence of the direct and indirect presence of embedded
High resolution ALMA observations of protoplanetary disks have revealed that many, if not all primordial disks consist of ring-like dust structures. The origin of these dust rings remains unclear, but a common explanation is the presence of planetary
High-resolution imaging of protoplanetary disks has unveiled a rich diversity of spiral structure, some of which may arise from disk-planet interaction. Using 3D hydrodynamics with $beta$-cooling to a vertically-stratified background, as well as radi