ﻻ يوجد ملخص باللغة العربية
Planets form in young circumstellar disks called protoplanetary disks. However, it is still difficult to catch planet formation in-situ. Nevertheless, from recent ALMA/SPHERE data, encouraging evidence of the direct and indirect presence of embedded planets has been identified in disks around young stars: co-moving point sources, gravitational perturbations, rings, cavities, and emission dips or shadows cast on disks. The interpretation of these observations needs a robust physical framework to deduce the complex disk geometry. In particular, protoplanetary disk models usually assume the gas pressure scale-height given by the ratio of the sound speed over the azimuthal velocity $H/r = c_{srm }/v_{rm k}$. By doing so, textit{radiative} pressure fields are often ignored, which could lead to a misinterpretation of the real vertical structure of such disks. We follow the evolution of a gaseous disk with an embedded Jupiter mass planet through hydrodynamical simulations, computing the disk scale-height including radiative pressure, which was derived from a generalization of the stellar atmosphere theory. We focus on the vertical impact of the radiative pressure in the vicinity of circumplanetary disks, where temperatures can reach $gtrsim 1000$ K for an accreting planet, and radiative forces can overcome gravitational forces from the planet. The radiation-pressure effects create a vertical optically thick column of gas and dust at the proto-planet location, casting a shadow in scattered light. This mechanism could explain the peculiar illumination patterns observed in some disks around young stars such as HD 169142 where a moving shadow has been detected, or the extremely high aspect-ratio $H/r sim 0.2$ observed in systems like AB Aur and CT Cha.
We study the structure of passively heated disks around T Tauri and Herbig Ae stars, and present a vectorized Monte Carlo dust radiative transfer model of protoplanetary disks. The vectorization provides a speed up factor of 100 when compared to a sc
Recent ALMA observations revealed concentric annular structures in several young class-II objects. In an attempt to produce the rings and gaps in some of these systems, they have been modeled numerically with a single embedded planet assuming a local
Three-dimensional hydrodynamic numerical simulations have demonstrated that the structure of a protoplanetary disc may be strongly affected by a planet orbiting in a plane that is misaligned to the disc. When the planet is able to open a gap, the dis
Understanding the diversity of planets requires to study the morphology and the physical conditions in the protoplanetary disks in which they form. We observed and spatially resolved the disk around the ~10 Myr old protoplanetary disk HD 100453 in po
Volatiles are compounds with low sublimation temperatures, and they make up most of the condensible mass in typical planet-forming environments. They consist of relatively small, often hydrogenated, molecules based on the abundant elements carbon, ni