ﻻ يوجد ملخص باللغة العربية
This article illustrates the application of deep learning to robot touch by considering a basic yet fundamental capability: estimating the relative pose of part of an object in contact with a tactile sensor. We begin by surveying deep learning applied to tactile robotics, focussing on optical tactile sensors, which help bridge from deep learning for vision to touch. We then show how deep learning can be used to train accurate pose models of 3D surfaces and edges that are insensitive to nuisance variables such as motion-dependent shear. This involves including representative motions as unlabelled perturbations of the training data and using Bayesian optimization of the network and training hyperparameters to find the most accurate models. Accurate estimation of pose from touch will enable robots to safely and precisely control their physical interactions, underlying a wide range of object exploration and manipulation tasks.
This work investigates uncertainty-aware deep learning (DL) in tactile robotics based on a general framework introduced recently for robot vision. For a test scenario, we consider optical tactile sensing in combination with DL to estimate the edge po
The mechanisms of infant development are far from understood. Learning about ones own body is likely a foundation for subsequent development. Here we look specifically at the problem of how spontaneous touches to the body in early infancy may give ri
This article describes a new way of controlling robots using soft tactile sensors: pose-based tactile servo (PBTS) control. The basic idea is to embed a tactile perception model for estimating the sensor pose within a servo control loop that is appli
With the increased availability of rich tactile sensors, there is an equally proportional need for open-source and integrated software capable of efficiently and effectively processing raw touch measurements into high-level signals that can be used f
PyRep is a toolkit for robot learning research, built on top of the virtual robotics experimentation platform (V-REP). Through a series of modifications and additions, we have created a tailored version of V-REP built with robot learning in mind. The