ﻻ يوجد ملخص باللغة العربية
This work investigates uncertainty-aware deep learning (DL) in tactile robotics based on a general framework introduced recently for robot vision. For a test scenario, we consider optical tactile sensing in combination with DL to estimate the edge pose as a feedback signal to servo around various 2D test objects. We demonstrate that uncertainty-aware DL can improve the pose estimation over deterministic DL methods. The system estimates the uncertainty associated with each prediction, which is used along with temporal coherency to improve the predictions via a Kalman filter, and hence improve the tactile servo control. The robot is able to robustly follow all of the presented contour shapes to reduce not only the error by a factor of two but also smooth the trajectory from the undesired noisy behaviour caused by previous deterministic networks. In our view, as the field of tactile robotics matures in its use of DL, the estimation of uncertainty will become a key component in the control of physically interactive tasks in complex environments.
This article illustrates the application of deep learning to robot touch by considering a basic yet fundamental capability: estimating the relative pose of part of an object in contact with a tactile sensor. We begin by surveying deep learning applie
This article describes a new way of controlling robots using soft tactile sensors: pose-based tactile servo (PBTS) control. The basic idea is to embed a tactile perception model for estimating the sensor pose within a servo control loop that is appli
Mobility in an effective and socially-compliant manner is an essential yet challenging task for robots operating in crowded spaces. Recent works have shown the power of deep reinforcement learning techniques to learn socially cooperative policies. Ho
Artificial touch would seem well-suited for Reinforcement Learning (RL), since both paradigms rely on interaction with an environment. Here we propose a new environment and set of tasks to encourage development of tactile reinforcement learning: lear
Current methods for estimating force from tactile sensor signals are either inaccurate analytic models or task-specific learned models. In this paper, we explore learning a robust model that maps tactile sensor signals to force. We specifically explo