ترغب بنشر مسار تعليمي؟ اضغط هنا

Active exploration for body model learning through self-touch on a humanoid robot with artificial skin

67   0   0.0 ( 0 )
 نشر من قبل Matej Hoffmann
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The mechanisms of infant development are far from understood. Learning about ones own body is likely a foundation for subsequent development. Here we look specifically at the problem of how spontaneous touches to the body in early infancy may give rise to first body models and bootstrap further development such as reaching competence. Unlike visually elicited reaching, reaching to own body requires connections of the tactile and motor space only, bypassing vision. Still, the problems of high dimensionality and redundancy of the motor system persist. In this work, we present an embodied computational model on a simulated humanoid robot with artificial sensitive skin on large areas of its body. The robot should autonomously develop the capacity to reach for every tactile sensor on its body. To do this efficiently, we employ the computational framework of intrinsic motivations and variants of goal babbling, as opposed to motor babbling, that prove to make the exploration process faster and alleviate the ill-posedness of learning inverse kinematics. Based on our results, we discuss the next steps in relation to infant studies: what information will be necessary to further ground this computational model in behavioral data.

قيم البحث

اقرأ أيضاً

In primate brains, tactile and proprioceptive inputs are relayed to the somatosensory cortex which is known for somatotopic representations, or, homunculi. Our research centers on understanding the mechanisms of the formation of these and more higher -level body representations (body schema) by using humanoid robots and neural networks to construct models. We specifically focus on how spatial representation of the body may be learned from somatosensory information in self-touch configurations. In this work, we target the representation of proprioceptive inputs, which we take to be joint angles in the robot. The inputs collected in different body postures serve as inputs to a Self-Organizing Map (SOM) with a 2D lattice on the output. With unrestricted, all-to-all connections, the map is not capable of representing the input space while preserving the topological relationships, because the intrinsic dimensionality of the body posture space is too large. Hence, we use a method we developed previously for tactile inputs (Hoffmann, Straka et al. 2018) called MRF-SOM, where the Maximum Receptive Field of output neurons is restricted so they only learn to represent specific parts of the input space. This is in line with the receptive fields of neurons in somatosensory areas representing proprioception that often respond to combination of few joints (e.g. wrist and elbow).
In the current level of evolution of Soccer 3D, motion control is a key factor in teams performance. Recent works takes advantages of model-free approaches based on Machine Learning to exploit robot dynamics in order to obtain faster locomotion skill s, achieving running policies and, therefore, opening a new research direction in the Soccer 3D environment. In this work, we present a methodology based on Deep Reinforcement Learning that learns running skills without any prior knowledge, using a neural network whose inputs are related to robots dynamics. Our results outperformed the previous state-of-the-art sprint velocity reported in Soccer 3D literature by a significant margin. It also demonstrated improvement in sample efficiency, being able to learn how to run in just few hours. We reported our results analyzing the training procedure and also evaluating the policies in terms of speed, reliability and human similarity. Finally, we presented key factors that lead us to improve previous results and shared some ideas for future work.
The hierarchical quadratic programming (HQP) is commonly applied to consider strict hierarchies of multi-tasks and robots physical inequality constraints during whole-body compliance. However, for the one-step HQP, the solution can oscillate when it is close to the boundary of constraints. It is because the abrupt hit of the bounds gives rise to unrealisable jerks and even infeasible solutions. This paper proposes the mixed control, which blends the single-axis model predictive control (MPC) and proportional derivate (PD) control for the whole-body compliance to overcome these deficiencies. The MPC predicts the distances between the bounds and the control target of the critical tasks, and it provides smooth and feasible solutions by prediction and optimisation in advance. However, applying MPC will inevitably increase the computation time. Therefore, to achieve a 500 Hz servo rate, the PD controllers still regulate other tasks to save computation resources. Also, we use a more efficient null space projection (NSP) whole-body controller instead of the HQP and distribute the single-axis MPCs into four CPU cores for parallel computation. Finally, we validate the desired capabilities of the proposed strategy via Simulations and the experiment on the humanoid robot Walker X.
We present a novel approach for interactive auditory object analysis with a humanoid robot. The robot elicits sensory information by physically shaking visually indistinguishable plastic capsules. It gathers the resulting audio signals from microphon es that are embedded into the robotic ears. A neural network architecture learns from these signals to analyze properties of the contents of the containers. Specifically, we evaluate the material classification and weight prediction accuracy and demonstrate that the framework is fairly robust to acoustic real-world noise.
This article illustrates the application of deep learning to robot touch by considering a basic yet fundamental capability: estimating the relative pose of part of an object in contact with a tactile sensor. We begin by surveying deep learning applie d to tactile robotics, focussing on optical tactile sensors, which help bridge from deep learning for vision to touch. We then show how deep learning can be used to train accurate pose models of 3D surfaces and edges that are insensitive to nuisance variables such as motion-dependent shear. This involves including representative motions as unlabelled perturbations of the training data and using Bayesian optimization of the network and training hyperparameters to find the most accurate models. Accurate estimation of pose from touch will enable robots to safely and precisely control their physical interactions, underlying a wide range of object exploration and manipulation tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا