ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Regularization Can Mitigate Double Descent

73   0   0.0 ( 0 )
 نشر من قبل Preetum Nakkiran
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent empirical and theoretical studies have shown that many learning algorithms -- from linear regression to neural networks -- can have test performance that is non-monotonic in quantities such the sample size and model size. This striking phenomenon, often referred to as double descent, has raised questions of if we need to re-think our current understanding of generalization. In this work, we study whether the double-descent phenomenon can be avoided by using optimal regularization. Theoretically, we prove that for certain linear regression models with isotropic data distribution, optimally-tuned $ell_2$ regularization achieves monotonic test performance as we grow either the sample size or the model size. We also demonstrate empirically that optimally-tuned $ell_2$ regularization can mitigate double descent for more general models, including neural networks. Our results suggest that it may also be informative to study the test risk scalings of various algorithms in the context of appropriately tuned regularization.



قيم البحث

اقرأ أيضاً

Machine learning algorithms are vulnerable to poisoning attacks, where a fraction of the training data is manipulated to degrade the algorithms performance. We show that current approaches, which typically assume that regularization hyperparameters r emain constant, lead to an overly pessimistic view of the algorithms robustness and of the impact of regularization. We propose a novel optimal attack formulation that considers the effect of the attack on the hyperparameters, modelling the attack as a emph{minimax bilevel optimization problem}. This allows to formulate optimal attacks, select hyperparameters and evaluate robustness under worst case conditions. We apply this formulation to logistic regression using $L_2$ regularization, empirically show the limitations of previous strategies and evidence the benefits of using $L_2$ regularization to dampen the effect of poisoning attacks.
Dataset bias is one of the prevailing causes of unfairness in machine learning. Addressing fairness at the data collection and dataset preparation stages therefore becomes an essential part of training fairer algorithms. In particular, active learnin g (AL) algorithms show promise for the task by drawing importance to the most informative training samples. However, the effect and interaction between existing AL algorithms and algorithmic fairness remain under-explored. In this paper, we study whether models trained with uncertainty-based AL heuristics such as BALD are fairer in their decisions with respect to a protected class than those trained with identically independently distributed (i.i.d.) sampling. We found a significant improvement on predictive parity when using BALD, while also improving accuracy compared to i.i.d. sampling. We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD. We found that, while addressing different fairness issues, their interaction further improves the results on most benchmarks and metrics we explored.
Learning an efficient update rule from data that promotes rapid learning of new tasks from the same distribution remains an open problem in meta-learning. Typically, previous works have approached this issue either by attempting to train a neural net work that directly produces updates or by attempting to learn better initialisations or scaling factors for a gradient-based update rule. Both of these approaches pose challenges. On one hand, directly producing an update forgoes a useful inductive bias and can easily lead to non-converging behaviour. On the other hand, approaches that try to control a gradient-based update rule typically resort to computing gradients through the learning process to obtain their meta-gradients, leading to methods that can not scale beyond few-shot task adaptation. In this work, we propose Warped Gradient Descent (WarpGrad), a method that intersects these approaches to mitigate their limitations. WarpGrad meta-learns an efficiently parameterised preconditioning matrix that facilitates gradient descent across the task distribution. Preconditioning arises by interleaving non-linear layers, referred to as warp-layers, between the layers of a task-learner. Warp-layers are meta-learned without backpropagating through the task training process in a manner similar to methods that learn to directly produce updates. WarpGrad is computationally efficient, easy to implement, and can scale to arbitrarily large meta-learning problems. We provide a geometrical interpretation of the approach and evaluate its effectiveness in a variety of settings, including few-shot, standard supervised, continual and reinforcement learning.
117 - Qiang Liu , Lemeng Wu , Dilin Wang 2019
We develop a progressive training approach for neural networks which adaptively grows the network structure by splitting existing neurons to multiple off-springs. By leveraging a functional steepest descent idea, we derive a simple criterion for deci ding the best subset of neurons to split and a splitting gradient for optimally updating the off-springs. Theoretically, our splitting strategy is a second-order functional steepest descent for escaping saddle points in an $infty$-Wasserstein metric space, on which the standard parametric gradient descent is a first-order steepest descent. Our method provides a new computationally efficient approach for optimizing neural network structures, especially for learning lightweight neural architectures in resource-constrained settings.
In solving a system of $n$ linear equations in $d$ variables $Ax=b$, the condition number of the $n,d$ matrix $A$ measures how much errors in the data $b$ affect the solution $x$. Estimates of this type are important in many inverse problems. An exam ple is machine learning where the key task is to estimate an underlying function from a set of measurements at random points in a high dimensional space and where low sensitivity to error in the data is a requirement for good predictive performance. Here we discuss the simple observation, which is known but surprisingly little quoted (see Theorem 4.2 in cite{Brgisser:2013:CGN:2526261}): when the columns of $A$ are random vectors, the condition number of $A$ is highest if $d=n$, that is when the inverse of $A$ exists. An overdetermined system ($n>d$) as well as an underdetermined system ($n<d$), for which the pseudoinverse must be used instead of the inverse, typically have significantly better, that is lower, condition numbers. Thus the condition number of $A$ plotted as function of $d$ shows a double descent behavior with a peak at $d=n$.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا