ترغب بنشر مسار تعليمي؟ اضغط هنا

Meta-Learning with Warped Gradient Descent

90   0   0.0 ( 0 )
 نشر من قبل Sebastian Flennerhag
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning an efficient update rule from data that promotes rapid learning of new tasks from the same distribution remains an open problem in meta-learning. Typically, previous works have approached this issue either by attempting to train a neural network that directly produces updates or by attempting to learn better initialisations or scaling factors for a gradient-based update rule. Both of these approaches pose challenges. On one hand, directly producing an update forgoes a useful inductive bias and can easily lead to non-converging behaviour. On the other hand, approaches that try to control a gradient-based update rule typically resort to computing gradients through the learning process to obtain their meta-gradients, leading to methods that can not scale beyond few-shot task adaptation. In this work, we propose Warped Gradient Descent (WarpGrad), a method that intersects these approaches to mitigate their limitations. WarpGrad meta-learns an efficiently parameterised preconditioning matrix that facilitates gradient descent across the task distribution. Preconditioning arises by interleaving non-linear layers, referred to as warp-layers, between the layers of a task-learner. Warp-layers are meta-learned without backpropagating through the task training process in a manner similar to methods that learn to directly produce updates. WarpGrad is computationally efficient, easy to implement, and can scale to arbitrarily large meta-learning problems. We provide a geometrical interpretation of the approach and evaluate its effectiveness in a variety of settings, including few-shot, standard supervised, continual and reinforcement learning.

قيم البحث

اقرأ أيضاً

Gradient-based meta-learning and hyperparameter optimization have seen significant progress recently, enabling practical end-to-end training of neural networks together with many hyperparameters. Nevertheless, existing approaches are relatively expen sive as they need to compute second-order derivatives and store a longer computational graph. This cost prevents scaling them to larger network architectures. We present EvoGrad, a new approach to meta-learning that draws upon evolutionary techniques to more efficiently compute hypergradients. EvoGrad estimates hypergradient with respect to hyperparameters without calculating second-order gradients, or storing a longer computational graph, leading to significant improvements in efficiency. We evaluate EvoGrad on two substantial recent meta-learning applications, namely cross-domain few-shot learning with feature-wise transformations and noisy label learning with MetaWeightNet. The results show that EvoGrad significantly improves efficiency and enables scaling meta-learning to bigger CNN architectures such as from ResNet18 to ResNet34.
Representations are fundamental to artificial intelligence. The performance of a learning system depends on the type of representation used for representing the data. Typically, these representations are hand-engineered using domain knowledge. More r ecently, the trend is to learn these representations through stochastic gradient descent in multi-layer neural networks, which is called backprop. Learning the representations directly from the incoming data stream reduces the human labour involved in designing a learning system. More importantly, this allows in scaling of a learning system for difficult tasks. In this paper, we introduce a new incremental learning algorithm called crossprop, which learns incoming weights of hidden units based on the meta-gradient descent approach, that was previously introduced by Sutton (1992) and Schraudolph (1999) for learning step-sizes. The final update equation introduces an additional memory parameter for each of these weights and generalizes the backprop update equation. From our experiments, we show that crossprop learns and reuses its feature representation while tackling new and unseen tasks whereas backprop relearns a new feature representation.
The goal of reinforcement learning algorithms is to estimate and/or optimise the value function. However, unlike supervised learning, no teacher or oracle is available to provide the true value function. Instead, the majority of reinforcement learnin g algorithms estimate and/or optimise a proxy for the value function. This proxy is typically based on a sampled and bootstrapped approximation to the true value function, known as a return. The particular choice of return is one of the chief components determining the nature of the algorithm: the rate at which future rewards are discounted; when and how values should be bootstrapped; or even the nature of the rewards themselves. It is well-known that these decisions are crucial to the overall success of RL algorithms. We discuss a gradient-based meta-learning algorithm that is able to adapt the nature of the return, online, whilst interacting and learning from the environment. When applied to 57 games on the Atari 2600 environment over 200 million frames, our algorithm achieved a new state-of-the-art performance.
Non-convex optimization problems are challenging to solve; the success and computational expense of a gradient descent algorithm or variant depend heavily on the initialization strategy. Often, either random initialization is used or initialization r ules are carefully designed by exploiting the nature of the problem class. As a simple alternative to hand-crafted initialization rules, we propose an approach for learning good initialization rules from previous solutions. We provide theoretical guarantees that establish conditions that are sufficient in all cases and also necessary in some under which our approach performs better than random initialization. We apply our methodology to various non-convex problems such as generating adversarial examples, generating post hoc explanations for black-box machine learning models, and allocating communication spectrum, and show consistent gains over other initialization techniques.
Deep reinforcement learning includes a broad family of algorithms that parameterise an internal representation, such as a value function or policy, by a deep neural network. Each algorithm optimises its parameters with respect to an objective, such a s Q-learning or policy gradient, that defines its semantics. In this work, we propose an algorithm based on meta-gradient descent that discovers its own objective, flexibly parameterised by a deep neural network, solely from interactive experience with its environment. Over time, this allows the agent to learn how to learn increasingly effectively. Furthermore, because the objective is discovered online, it can adapt to changes over time. We demonstrate that the algorithm discovers how to address several important issues in RL, such as bootstrapping, non-stationarity, and off-policy learning. On the Atari Learning Environment, the meta-gradient algorithm adapts over time to learn with greater efficiency, eventually outperforming the median score of a strong actor-critic baseline.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا