ترغب بنشر مسار تعليمي؟ اضغط هنا

Convolutional Sparse Support Estimator Network (CSEN) From energy efficient support estimation to learning-aided Compressive Sensing

353   0   0.0 ( 0 )
 نشر من قبل Mehmet Yamac
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Support estimation (SE) of a sparse signal refers to finding the location indices of the non-zero elements in a sparse representation. Most of the traditional approaches dealing with SE problem are iterative algorithms based on greedy methods or optimization techniques. Indeed, a vast majority of them use sparse signal recovery techniques to obtain support sets instead of directly mapping the non-zero locations from denser measurements (e.g., Compressively Sensed Measurements). This study proposes a novel approach for learning such a mapping from a training set. To accomplish this objective, the Convolutional Support Estimator Networks (CSENs), each with a compact configuration, are designed. The proposed CSEN can be a crucial tool for the following scenarios: (i) Real-time and low-cost support estimation can be applied in any mobile and low-power edge device for anomaly localization, simultaneous face recognition, etc. (ii) CSENs output can directly be used as prior information which improves the performance of sparse signal recovery algorithms. The results over the benchmark datasets show that state-of-the-art performance levels can be achieved by the proposed approach with a significantly reduced computational complexity.



قيم البحث

اقرأ أيضاً

Coronavirus disease (Covid-19) has been the main agenda of the whole world since it came in sight in December 2019. It has already caused thousands of causalities and infected several millions worldwide. Any technological tool that can be provided to healthcare practitioners to save time, effort, and possibly lives has crucial importance. The main tools practitioners currently use to diagnose Covid-19 are Reverse Transcription-Polymerase Chain reaction (RT-PCR) and Computed Tomography (CT), which require significant time, resources and acknowledged experts. X-ray imaging is a common and easily accessible tool that has great potential for Covid-19 diagnosis. In this study, we propose a novel approach for Covid-19 recognition from chest X-ray images. Despite the importance of the problem, recent studies in this domain produced not so satisfactory results due to the limited datasets available for training. Recall that Deep Learning techniques can generally provide state-of-the-art performance in many classification tasks when trained properly over large datasets, such data scarcity can be a crucial obstacle when using them for Covid-19 detection. Alternative approaches such as representation-based classification (collaborative or sparse representation) might provide satisfactory performance with limited size datasets, but they generally fall short in performance or speed compared to Machine Learning methods. To address this deficiency, Convolution Support Estimation Network (CSEN) has recently been proposed as a bridge between model-based and Deep Learning approaches by providing a non-iterative real-time mapping from query sample to ideally sparse representation coefficient support, which is critical information for class decision in representation based techniques.
In CS literature, the efforts can be divided into two groups: finding a measurement matrix that preserves the compressed information at the maximum level, and finding a reconstruction algorithm for the compressed information. In the traditional CS se tup, the measurement matrices are selected as random matrices, and optimization-based iterative solutions are used to recover the signals. However, when we handle large signals, using random matrices become cumbersome especially when it comes to iterative optimization-based solutions. Even though recent deep learning-based solutions boost the reconstruction accuracy performance while speeding up the recovery, still jointly learning the whole measurement matrix is a difficult process. In this work, we introduce a separable multi-linear learning of the CS matrix by representing it as the summation of arbitrary number of tensors. For a special case where the CS operation is set as a single tensor multiplication, the model is reduced to the learning-based separable CS; while a dense CS matrix can be approximated and learned as the summation of multiple tensors. Both cases can be used in CS of two or multi-dimensional signals e.g., images, multi-spectral images, videos, etc. Structural CS matrices can also be easily approximated and learned in our multi-linear separable learning setup with structural tensor sum representation. Hence, our learnable generalized tensor summation CS operation encapsulates most CS setups including separable CS, non-separable CS (traditional vector-matrix multiplication), structural CS, and CS of the multi-dimensional signals. For both gray-scale and RGB images, the proposed scheme surpasses most state-of-the-art solutions, especially in lower measurement rates. Although the performance gain remains limited from tensor to the sum of tensor representation for gray-scale images, it becomes significant in the RGB case.
This paper presents an inertial sensor aided technique for beam alignment and tracking in massive multiple-input multiple-output (MIMO) vehicle-to-vehicle (V2V) communications based on millimeter waves (mmWave). Since directional communications in ve hicular scenarios are severely hindered by beam pointing issues, a beam alignment procedure has to be periodically carried out to guarantee the communication reliability. When dealing with massive MIMO links, the beam sweeping approach is known to be time consuming and often unfeasible due to latency constraints. To speed up the process, we propose a method that exploits a-priori information on array dynamics provided by an inertial sensor on transceivers to assist the beam alignment procedure. The proposed inertial sensor aided technique allows a continuous tracking of the beam while transmitting, avoiding frequent realignment phases. Numerical results based on real measurements of on-transceiver accelerometers demonstrate a significant gain in terms of V2V communication throughput with respect to conventional beam alignment protocols.
Video snapshot compressive imaging (SCI) captures a sequence of video frames in a single shot using a 2D detector. The underlying principle is that during one exposure time, different masks are imposed on the high-speed scene to form a compressed mea surement. With the knowledge of masks, optimization algorithms or deep learning methods are employed to reconstruct the desired high-speed video frames from this snapshot measurement. Unfortunately, though these methods can achieve decent results, the long running time of optimization algorithms or huge training memory occupation of deep networks still preclude them in practical applications. In this paper, we develop a memory-efficient network for large-scale video SCI based on multi-group reversible 3D convolutional neural networks. In addition to the basic model for the grayscale SCI system, we take one step further to combine demosaicing and SCI reconstruction to directly recover color video from Bayer measurements. Extensive results on both simulation and real data captured by SCI cameras demonstrate that our proposed model outperforms previous state-of-the-art with less memory and thus can be used in large-scale problems. The code is at https://github.com/BoChenGroup/RevSCI-net.
In this paper, we consider the problem of compressive sensing (CS) recovery with a prior support and the prior support quality information available. Different from classical works which exploit prior support blindly, we shall propose novel CS recove ry algorithms to exploit the prior support adaptively based on the quality information. We analyze the distortion bound of the recovered signal from the proposed algorithm and we show that a better quality prior support can lead to better CS recovery performance. We also show that the proposed algorithm would converge in $mathcal{O}left(logmbox{SNR}right)$ steps. To tolerate possible model mismatch, we further propose some robustness designs to combat incorrect prior support quality information. Finally, we apply the proposed framework to sparse channel estimation in massive MIMO systems with temporal correlation to further reduce the required pilot training overhead.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا