ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the problem of compressive sensing (CS) recovery with a prior support and the prior support quality information available. Different from classical works which exploit prior support blindly, we shall propose novel CS recovery algorithms to exploit the prior support adaptively based on the quality information. We analyze the distortion bound of the recovered signal from the proposed algorithm and we show that a better quality prior support can lead to better CS recovery performance. We also show that the proposed algorithm would converge in $mathcal{O}left(logmbox{SNR}right)$ steps. To tolerate possible model mismatch, we further propose some robustness designs to combat incorrect prior support quality information. Finally, we apply the proposed framework to sparse channel estimation in massive MIMO systems with temporal correlation to further reduce the required pilot training overhead.
Compressed sensing (CS) with prior information concerns the problem of reconstructing a sparse signal with the aid of a similar signal which is known beforehand. We consider a new approach to integrate the prior information into CS via maximizing the
This paper investigates the problem of estimating sparse channels in massive MIMO systems. Most wireless channels are sparse with large delay spread, while some channels can be observed having sparse common support (SCS) within a certain area of the
The problem of wideband massive MIMO channel estimation is considered. Targeting for low complexity algorithms as well as small training overhead, a compressive sensing (CS) approach is pursued. Unfortunately, due to the Kronecker-type sensing (measu
We consider the problem of channel estimation for uplink multiuser massive MIMO systems, where, in order to significantly reduce the hardware cost and power consumption, one-bit analog-to-digital converters (ADCs) are used at the base station (BS) to
Greed is good. However, the tighter you squeeze, the less you have. In this paper, a less greedy algorithm for sparse signal reconstruction in compressive sensing, named orthogonal matching pursuit with thresholding is studied. Using the global 2-coh