ترغب بنشر مسار تعليمي؟ اضغط هنا

Compressive Sensing with Prior Support Quality Information and Application to Massive MIMO Channel Estimation with Temporal Correlation

277   0   0.0 ( 0 )
 نشر من قبل Xiongbin Rao
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider the problem of compressive sensing (CS) recovery with a prior support and the prior support quality information available. Different from classical works which exploit prior support blindly, we shall propose novel CS recovery algorithms to exploit the prior support adaptively based on the quality information. We analyze the distortion bound of the recovered signal from the proposed algorithm and we show that a better quality prior support can lead to better CS recovery performance. We also show that the proposed algorithm would converge in $mathcal{O}left(logmbox{SNR}right)$ steps. To tolerate possible model mismatch, we further propose some robustness designs to combat incorrect prior support quality information. Finally, we apply the proposed framework to sparse channel estimation in massive MIMO systems with temporal correlation to further reduce the required pilot training overhead.



قيم البحث

اقرأ أيضاً

115 - Xu Zhang , Wei Cui , 2017
Compressed sensing (CS) with prior information concerns the problem of reconstructing a sparse signal with the aid of a similar signal which is known beforehand. We consider a new approach to integrate the prior information into CS via maximizing the correlation between the prior knowledge and the desired signal. We then present a geometric analysis for the proposed method under sub-Gaussian measurements. Our results reveal that if the prior information is good enough, then the proposed approach can improve the performance of the standard CS. Simulations are provided to verify our results.
This paper investigates the problem of estimating sparse channels in massive MIMO systems. Most wireless channels are sparse with large delay spread, while some channels can be observed having sparse common support (SCS) within a certain area of the antenna array, i.e., the antenna array can be grouped into several clusters according to the sparse supports of channels. The SCS property is attractive when it comes to the estimation of large number of channels in massive MIMO systems. Using the SCS of channels, one expects better performance, but the number of clusters and the elements for each cluster are always unknown in the receiver. In this paper, {the Dirichlet process} is exploited to model such sparse channels where those in each cluster have SCS. We proposed a low complexity message passing based sparse Bayesian learning to perform channel estimation in massive MIMO systems by using combined BP with MF on a factor graph. Simulation results demonstrate that the proposed massive MIMO sparse channel estimation outperforms the state-of-the-art algorithms. Especially, it even shows better performance than the variational Bayesian method applied for massive MIMO channel estimation.
The problem of wideband massive MIMO channel estimation is considered. Targeting for low complexity algorithms as well as small training overhead, a compressive sensing (CS) approach is pursued. Unfortunately, due to the Kronecker-type sensing (measu rement) matrix corresponding to this setup, application of standard CS algorithms and analysis methodology does not apply. By recognizing that the channel possesses a special structure, termed hierarchical sparsity, we propose an efficient algorithm that explicitly takes into account this property. In addition, by extending the standard CS analysis methodology to hierarchical sparse vectors, we provide a rigorous analysis of the algorithm performance in terms of estimation error as well as number of pilot subcarriers required to achieve it. Small training overhead, in turn, means higher number of supported users in a cell and potentially improved pilot decontamination. We believe, that this is the first paper that draws a rigorous connection between the hierarchical framework and Kronecker measurements. Numerical results verify the advantage of employing the proposed approach in this setting instead of standard CS algorithms.
We consider the problem of channel estimation for uplink multiuser massive MIMO systems, where, in order to significantly reduce the hardware cost and power consumption, one-bit analog-to-digital converters (ADCs) are used at the base station (BS) to quantize the received signal. Channel estimation for one-bit massive MIMO systems is challenging due to the severe distortion caused by the coarse quantization. It was shown in previous studies that an extremely long training sequence is required to attain an acceptable performance. In this paper, we study the problem of optimal one-bit quantization design for channel estimation in one-bit massive MIMO systems. Our analysis reveals that, if the quantization thresholds are optimally devised, using one-bit ADCs can achieve an estimation error close to (with an increase by a factor of $pi/2$) that of an ideal estimator which has access to the unquantized data. The optimal quantization thresholds, however, are dependent on the unknown channel parameters. To cope with this difficulty, we propose an adaptive quantization (AQ) approach in which the thresholds are adaptively adjusted in a way such that the thresholds converge to the optimal thresholds, and a random quantization (RQ) scheme which randomly generate a set of nonidentical thresholds based on some statistical prior knowledge of the channel. Simulation results show that, our proposed AQ and RQ schemes, owing to their wisely devised thresholds, present a significant performance improvement over the conventional fixed quantization scheme that uses a fixed (typically zero) threshold, and meanwhile achieve a substantial training overhead reduction for channel estimation. In particular, even with a moderate number of pilot symbols (about 5 times the number of users), the AQ scheme can provide an achievable rate close to that of the perfect channel state information (CSI) case.
Greed is good. However, the tighter you squeeze, the less you have. In this paper, a less greedy algorithm for sparse signal reconstruction in compressive sensing, named orthogonal matching pursuit with thresholding is studied. Using the global 2-coh erence , which provides a bridge between the well known mutual coherence and the restricted isometry constant, the performance of orthogonal matching pursuit with thresholding is analyzed and more general results for sparse signal reconstruction are obtained. It is also shown that given the same assumption on the coherence index and the restricted isometry constant as required for orthogonal matching pursuit, the thresholding variation gives exactly the same reconstruction performance with significantly less complexity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا