ﻻ يوجد ملخص باللغة العربية
We prove that $L(SL_2(textbf{k}))$ is a maximal Haagerup von Neumann subalgebra in $L(textbf{k}^2rtimes SL_2(textbf{k}))$ for $textbf{k}=mathbb{Q}$. Then we show how to modify the proof to handle $textbf{k}=mathbb{Z}$. The key step for the proof is a complete description of all intermediate von Neumann subalgebras between $L(SL_2(textbf{k}))$ and $L^{infty}(Y)rtimes SL_2(textbf{k})$, where $SL_2(textbf{k})curvearrowright Y$ denotes the quotient of the algebraic action $SL_2(textbf{k})curvearrowright widehat{textbf{k}^2}$ by modding out the relation $phisim phi$, where $phi$, $phiin widehat{textbf{k}^2}$ and $phi(x, y):=phi(-x, -y)$ for all $(x, y)in textbf{k}^2$. As a by-product, we show $L(PSL_2(mathbb{Q}))$ is a maximal von Neumann subalgebra in $L^{infty}(Y)rtimes PSL_2(mathbb{Q})$; in particular, $PSL_2(mathbb{Q})curvearrowright Y$ is a prime action, i.e. it admits no non-trivial quotient actions.
We initiate a study of maximal subgroups and maximal von Neumann subalgebras which have the Haagerup property. We determine maximal Haagerup subgroups inside $mathbb{Z}^2 rtimes SL_2(mathbb{Z})$ and obtain several explicit instances where maximal Haa
Consider a minimal free topological dynamical system $(X, T, mathbb{Z}^d)$. It is shown that the comparison radius of the crossed product C*-algebra $mathrm{C}(X) rtimes mathbb{Z}^d$ is at most the half of the mean topological dimension of $(X, T, ma
For a positive integer $g$, let $mathrm{Sp}_{2g}(R)$ denote the group of $2g times 2g$ symplectic matrices over a ring $R$. Assume $g ge 2$. For a prime number $ell$, we give a self-contained proof that any closed subgroup of $mathrm{Sp}_{2g}(mathbb{
The notion of $SL_2$-tiling is a generalization of that of classical Coxeter-Conway frieze pattern. We classify doubly antiperiodic $SL_2$-tilings that contain a rectangular domain of positive integers. Every such $SL_2$-tiling corresponds to a pair
For every pair of distinct primes $p$, $q$ we prove that $mathbb{Z}_p^3 times mathbb{Z}_q$ is a CI-group with respect to binary relational structures.