ترغب بنشر مسار تعليمي؟ اضغط هنا

The Cayley isomorphism property for $mathbb{Z}_p^3 times mathbb{Z}_q$

325   0   0.0 ( 0 )
 نشر من قبل Gabor Somlai
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For every pair of distinct primes $p$, $q$ we prove that $mathbb{Z}_p^3 times mathbb{Z}_q$ is a CI-group with respect to binary relational structures.



قيم البحث

اقرأ أيضاً

We define the $p$-adic trace of certain rank-one local systems on the multiplicative group over $p$-adic numbers, using Sekiguchi and Suwas unification of Kummer and Artin-Schrier-Witt theories. Our main observation is that, for every non-negative in teger $n$, the $p$-adic trace defines an isomorphism of abelian groups between local systems whose order divides $(p-1)p^n$ and $ell$-adic characters of the multiplicative group of $p$-adic integers of depth less than or equal to $n$.
For a positive integer $g$, let $mathrm{Sp}_{2g}(R)$ denote the group of $2g times 2g$ symplectic matrices over a ring $R$. Assume $g ge 2$. For a prime number $ell$, we give a self-contained proof that any closed subgroup of $mathrm{Sp}_{2g}(mathbb{ Z}_ell)$ which surjects onto $mathrm{Sp}_{2g}(mathbb{Z}/ellmathbb{Z})$ must in fact equal all of $mathrm{Sp}_{2g}(mathbb{Z}_ell)$. The result and the method of proof are both motivated by group-theoretic considerations that arise in the study of Galois representations associated to abelian varieties.
We know that $mathbb{Z}_n$ is a finite field for a prime number $n$. Let $m,n$ be arbitrary natural numbers and let $mathbb{Z}^m_n= mathbb{Z}_n timesmathbb{Z}_ntimes...timesmathbb{Z}_n$ be the Cartesian product of $m$ rings $mathbb{Z}_n$. In this not e, we present the action of $SL(m, mathbb{Z}_n)={A in mathbb{Z}^{m,m}_{n} : det A equiv 1 (modsimn)}$, where $SL(m, mathbb{Z}_n)$ for $ngeq 2$ is a group under matrix multiplication modulo $n$, on the ring $mathbb{Z}^m_n$ as a right multiplication of a row vector of $mathbb{Z}^m_n$ by a matrix of $SL(m, mathbb{Z}_n)$ to determine the orbits of the ring $mathbb{Z}^m_n$. This work is an extension of [1]
We continue recent efforts to discover examples of deconfined quantum criticality in one-dimensional models. In this work we investigate the transition between a $mathbb{Z}_3$ ferromagnet and a phase with valence bond solid (VBS) order in a spin chai n with $mathbb{Z}_3timesmathbb{Z}_3$ global symmetry. We study a model with alternating projective representations on the sites of the two sublattices, allowing the Hamiltonian to connect to an exactly solvable point having VBS order with the character of SU(3)-invariant singlets. Such a model does not admit a Lieb-Schultz-Mattis theorem typical of systems realizing deconfined critical points. Nevertheless, we find evidence for a direct transition from the VBS phase to a $mathbb{Z}_3$ ferromagnet. Finite-entanglement scaling data are consistent with a second-order or weakly first-order transition. We find in our parameter space an integrable lattice model apparently describing the phase transition, with a very long, finite, correlation length of 190878 lattice spacings. Based on exact results for this model, we propose that the transition is extremely weakly first order, and is part of a family of DQCP described by walking of renormalization group flows.
In this paper we study finite groups which have Cayley isomorphism property with respect to Cayley maps, CIM-groups for a brief. We show that the structure of the CIM-groups is very restricted. It is described in Theorem~ref{111015a} where a short li st of possible candidates for CIM-groups is given. Theorem~ref{111015c} provides concrete examples of infinite series of CIM-groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا