ﻻ يوجد ملخص باللغة العربية
Single image super-resolution (SISR) is an image processing task which obtains high-resolution (HR) image from a low-resolution (LR) image. Recently, due to the capability in feature extraction, a series of deep learning methods have brought important crucial improvement for SISR. However, we observe that no matter how deeper the networks are designed, they usually do not have good generalization ability, which leads to the fact that almost all of existing SR methods have poor performances on restoration of the weak texture details. To solve these problems, we propose a weak texture information map guided image super-resolution with deep residual networks. It contains three sub-networks, one main network which extracts the main features and fuses weak texture details, another two auxiliary networks extract the weak texture details fallen in the main network. Two part of networks work cooperatively, the auxiliary networks predict and integrates week texture information into the main network, which is conducive to the main network learning more inconspicuous details. Experiments results demonstrate that our methods performs achieve the state-of-the-art quantitatively. Specifically, the image super-resolution results of our method own more weak texture details.
Deep Convolutional Neural Networks (DCNNs) have achieved impressive performance in Single Image Super-Resolution (SISR). To further improve the performance, existing CNN-based methods generally focus on designing deeper architecture of the network. H
Convolutional neural network (CNN) depth is of crucial importance for image super-resolution (SR). However, we observe that deeper networks for image SR are more difficult to train. The low-resolution inputs and features contain abundant low-frequenc
It has become a standard practice to use the convolutional networks (ConvNet) with RELU non-linearity in image restoration and super-resolution (SR). Although the universal approximation theorem states that a multi-layer neural network can approximat
Convolutional neural networks are the most successful models in single image super-resolution. Deeper networks, residual connections, and attention mechanisms have further improved their performance. However, these strategies often improve the recons
Hyperspectral images are of crucial importance in order to better understand features of different materials. To reach this goal, they leverage on a high number of spectral bands. However, this interesting characteristic is often paid by a reduced sp