ﻻ يوجد ملخص باللغة العربية
It has become a standard practice to use the convolutional networks (ConvNet) with RELU non-linearity in image restoration and super-resolution (SR). Although the universal approximation theorem states that a multi-layer neural network can approximate any non-linear function with the desired precision, it does not reveal the best network architecture to do so. Recently, operational neural networks (ONNs) that choose the best non-linearity from a set of alternatives, and their self-organized variants (Self-ONN) that approximate any non-linearity via Taylor series have been proposed to address the well-known limitations and drawbacks of conventional ConvNets such as network homogeneity using only the McCulloch-Pitts neuron model. In this paper, we propose the concept of self-organized operational residual (SOR) blocks, and present hybrid network architectures combining regular residual and SOR blocks to strike a balance between the benefits of stronger non-linearity and the overall number of parameters. The experimental results demonstrate that the~proposed architectures yield performance improvements in both PSNR and perceptual metrics.
Convolutional neural networks are the most successful models in single image super-resolution. Deeper networks, residual connections, and attention mechanisms have further improved their performance. However, these strategies often improve the recons
Deep Convolutional Neural Networks (DCNNs) have achieved impressive performance in Single Image Super-Resolution (SISR). To further improve the performance, existing CNN-based methods generally focus on designing deeper architecture of the network. H
A very deep convolutional neural network (CNN) has recently achieved great success for image super-resolution (SR) and offered hierarchical features as well. However, most deep CNN based SR models do not make full use of the hierarchical features fro
Single image super-resolution (SISR) is an image processing task which obtains high-resolution (HR) image from a low-resolution (LR) image. Recently, due to the capability in feature extraction, a series of deep learning methods have brought importan
With the effective application of deep learning in computer vision, breakthroughs have been made in the research of super-resolution images reconstruction. However, many researches have pointed out that the insufficiency of the neural network extract