ﻻ يوجد ملخص باللغة العربية
In this paper, we adopt the fluid limits to analyze Age of Information (AoI) in a wireless multiaccess network with many users. We consider the case wherein users have heterogeneous i.i.d. channel conditions and the statuses are generate-at-will. Convergence of the AoI occupancy measure to the fluid limit, represented by a Partial Derivative Equation (PDE), is proved within an approximation error inversely proportional to the number of users. Global convergence to the equilibrium of the PDE, i.e., stationary AoI distribution, is also proved. Based on this framework, it is shown that an existing AoI lower bound in the literature is in fact asymptotically tight, and a simple threshold policy, with the thresholds explicitly derived, achieves the optimum asymptotically. The proposed threshold-based policy is also much easier to decentralize than the widely-known index-based policies which require comparing user indices. To showcase the usability of the framework, we also use it to analyze the average non-linear AoI functions (with power and logarithm forms) in wireless networks. Again, explicit optimal threshold-based policies are derived, and average age functions proven. Simulation results show that even when the number of users is limited, e.g., $10$, the proposed policy and analysis are still effective.
Timeliness is an emerging requirement for many Internet of Things (IoT) applications. In IoT networks, where a large-number of nodes are distributed, severe interference may incur during the transmission phase which causes age of information (AoI) de
Unmanned aerial vehicles (UAVs) are expected to be a key component of the next-generation wireless systems. Due to their deployment flexibility, UAVs are being considered as an efficient solution for collecting information data from ground nodes and
We consider the age of information in a multihop multicast network where there is a single source node sending time-sensitive updates to $n^L$ end nodes, and $L$ denotes the number of hops. In the first hop, the source node sends updates to $n$ first
This paper investigates the information freshness of two-way relay networks (TWRN) operated with physical-layer network coding (PNC). Information freshness is quantified by age of information (AoI), defined as the time elapsed since the generation ti
A source node updates its status as a point process and also forwards its updates to a network of observer nodes. Within the network of observers, these updates are forwarded as point processes from node to node. Each node wishes its knowledge of the