ترغب بنشر مسار تعليمي؟ اضغط هنا

On The Age Of Information In Status Update Systems With Packet Management

403   0   0.0 ( 0 )
 نشر من قبل Maice Costa
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a communication system in which status updates arrive at a source node, and should be transmitted through a network to the intended destination node. The status updates are samples of a random process under observation, transmitted as packets, which also contain the time stamp to identify when the sample was generated. The age of the information available to the destination node is the time elapsed since the last received update was generated. In this paper, we model the source-destination link using queuing theory, and we assume that the time it takes to successfully transmit a packet to the destination is an exponentially distributed service time. We analyze the age of information in the case that the source node has the capability to manage the arriving samples, possibly discarding packets in order to avoid wasting network resources with the transmission of stale information. In addition to characterizing the average age, we propose a new metric, called peak age, which provides information about the maximum value of the age, achieved immediately before receiving an update.



قيم البحث

اقرأ أيضاً

Timely status updating is crucial for future applications that involve remote monitoring and control, such as autonomous driving and Industrial Internet of Things (IIoT). Age of Information (AoI) has been proposed to measure the freshness of status u pdates. However, it is incapable of capturing critical systematic context information that indicates the time-varying importance of status information, and the dynamic evolution of status. In this paper, we propose a context-based metric, namely the Urgency of Information (UoI), to evaluate the timeliness of status updates. Compared to AoI, the new metric incorporates both time-varying context information and dynamic status evolution, which enables the analysis on context-based adaptive status update schemes, as well as more effective remote monitoring and control. The minimization of average UoI for a status update terminal with an updating frequency constraint is investigated, and an update-index-based adaptive scheme is proposed. Simulation results show that the proposed scheme achieves a near-optimal performance with a low computational complexity.
We consider the age of information in a multicast network where there is a single source node that sends time-sensitive updates to $n$ receiver nodes. Each status update is one of two kinds: type I or type II. To study the age of information experien ced by the receiver nodes for both types of updates, we consider two cases: update streams are generated by the source node at-will and update streams arrive exogenously to the source node. We show that using an earliest $k_1$ and $k_2$ transmission scheme for type I and type II updates, respectively, the age of information of both update streams at the receiver nodes can be made a constant independent of $n$. In particular, the source node transmits each type I update packet to the earliest $k_1$ and each type II update packet to the earliest $k_2$ of $n$ receiver nodes. We determine the optimum $k_1$ and $k_2$ stopping thresholds for arbitrary shifted exponential link delays to individually and jointly minimize the average age of both update streams and characterize the pareto optimal curve for the two ages.
224 - Jie Gong , Xiang Chen , Xiao Ma 2018
Age-of-information is a novel performance metric in communication systems to indicate the freshness of the latest received data, which has wide applications in monitoring and control scenarios. Another important performance metric in these applicatio ns is energy consumption, since monitors or sensors are usually energy constrained. In this paper, we study the energy-age tradeoff in a status update system where data transmission from a source to a receiver may encounter failure due to channel error. As the status sensing process consumes energy, when a transmission failure happens, the source may either retransmit the existing data to save energy for sensing, or sense and transmit a new update to minimize age-of-information. A threshold-based retransmission policy is considered where each update is allowed to be transmitted no more than M times. Closed-form average age-of-information and energy consumption is derived and expressed as a function of channel failure probability and maximum number of retransmissions M. Numerical simulations validate our analytical results, and illustrate the tradeoff between average age-of-information and energy consumption.
A large body of applications that involve monitoring, decision making, and forecasting require timely status updates for their efficient operation. Age of Information (AoI) is a newly proposed metric that effectively captures this requirement. Recent research on the subject has derived AoI optimal policies for the generation of status updates and AoI optimal packet queueing disciplines. Unlike previous research we focus on low-end devices that typically support monitoring applications in the context of the Internet of Things. We acknowledge that these devices host a diverse set of applications some of which are AoI sensitive while others are not. Furthermore, due to their limited computational resources they typically utilize a simple First-In First-Out (FIFO) queueing discipline. We consider the problem of optimally controlling the status update generation process for a system with a source-destination pair that communicates via a wireless link, whereby the source node is comprised of a FIFO queue and two applications, one that is AoI sensitive and one that is not. We formulate this problem as a dynamic programming problem and utilize the framework of Markov Decision Processes to derive optimal policies for the generation of status update packets. Due to the lack of comparable methods in the literature, we compare the derived optimal policies against baseline policies, such as the zero-wait policy, and investigate the performance of all policies for a variety of network configurations. Results indicate that existing status update policies fail to capture the trade-off between frequent generation of status updates and queueing delay and thus perform poorly.
Age of Information (AoI) has become an important concept in communications, as it allows system designers to measure the freshness of the information available to remote monitoring or control processes. However, its definition tacitly assumed that ne w information is used at any time, which is not always the case and the instants at which information is collected and used are dependent on a certain query process. We propose a model that accounts for the discrete time nature of many monitoring processes, considering a pull-based communication model in which the freshness of information is only important when the receiver generates a query. We then define the Age of Information at Query (QAoI), a more general metric that fits the pull-based scenario, and show how its optimization can lead to very different choices from traditional push-based AoI optimization when using a Packet Erasure Channel (PEC).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا