ﻻ يوجد ملخص باللغة العربية
Optical spin angular momenta in a confined electromagnetic field exhibit remarkable difference with their free space counterparts, in particular, the optical transverse spin that is locked with the energy propagating direction lays the foundation for many intriguing physical effects such as unidirectional transportation, quantum spin Hall effect, photonic Skyrmion, etc. In order to investigate the underlying physics behind the spin-orbit interactions as well as to develop the optical spin-based applications, it is crucial to uncover the spin texture in a confined field, yet it faces challenge due to their chiral and near-field vectorial features. Here, we propose a scanning imaging technique which can map the near-field distributions of the optical spin angular momenta with an achiral dielectric nanosphere. The spin angular momentum component normal to the interface can be uncovered experimentally by employing the proposed scanning imaging technique and the three-dimensional spin vector can be reconstructed theoretically with the experimental results. The experiment is demonstrated on the example of surface plasmon polaritons excited by various vector vortex beams under a tight-focusing configuration, where the spin-orbit interaction emerges clearly. The proposed method, which can be utilized to reconstruct the photonic Skyrmion and other photonic topological structures, is straightforward and of high precision, and hence it is expected to be valuable for the study of near-field spin optics and topological photonics.
Controlling the directionality of surface plasmon polaritons (SPPs) has been widely studied, while the direction of SPPs was always switched by orthogonal polarizations in the reported methods. Here, we present a scheme to control the directionality
We have observed laser-like emission of surface plasmon polaritons (SPPs) decoupled to the glass prism in an attenuated total reflection setup. SPPs were excited by optically pumped molecules in a polymeric film deposited on the top of the silver fil
We propose a scheme to obtain a low-loss propagation of Airy surface plasmon polaritons (SPPs) along the interface between a dielectric and a negative-index metamaterial (NIMM). We show that, by using the transverse-magnetic mode and the related dest
Transition metal dichalcogenide (TMD) monolayers are direct bandgap semiconductors that feature tightly bound excitons, strong spin-orbit coupling, and spin-valley degrees of freedom. Depending on the spin configuration of the electron-hole pairs, in
We develop a quantum theory of plasmon polaritons in chains of metallic nanoparticles, describing both near- and far-field interparticle distances, by including plasmon-photon Umklapp processes. Taking into account the retardation effects of the long