ﻻ يوجد ملخص باللغة العربية
Controlling the directionality of surface plasmon polaritons (SPPs) has been widely studied, while the direction of SPPs was always switched by orthogonal polarizations in the reported methods. Here, we present a scheme to control the directionality of SPPs by arbitrary spin polarizations. Extremely, the device can split two quite adjacent polarization components to two opposite directions. The versatility of the presented design scheme can offer opportunities for polarization sensing, polarization splitting and polarization-controlled plasmonic devices.
Surface plasmon polaritons have attracted varies of interests due to its special properties, especially in the polarization-controlled devices. Typically, the polarization-controlled devices include directional coupling, focusing lens and plasmonic v
We propose a new type of reflective polarizer based on polarization-dependent coupling to surface-plasmon polaritons (SPPs) from free space. This inexpensive polarizer is relatively narrowband but features an extinction ratio of up to 1000 with effic
We have observed laser-like emission of surface plasmon polaritons (SPPs) decoupled to the glass prism in an attenuated total reflection setup. SPPs were excited by optically pumped molecules in a polymeric film deposited on the top of the silver fil
We propose a scheme to obtain a low-loss propagation of Airy surface plasmon polaritons (SPPs) along the interface between a dielectric and a negative-index metamaterial (NIMM). We show that, by using the transverse-magnetic mode and the related dest
The interference patterns of the surface plasmon polaritons(SPPs) on the metal surface from a point source are observed. These interference patterns come from the forward SPPs and the reflected one from the obstacles, such as straightedge,corner, and