ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons

95   0   0.0 ( 0 )
 نشر من قبل You Zhou
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transition metal dichalcogenide (TMD) monolayers are direct bandgap semiconductors that feature tightly bound excitons, strong spin-orbit coupling, and spin-valley degrees of freedom. Depending on the spin configuration of the electron-hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark. Dark excitons involve nominally spin-forbidden optical transitions with zero in-plane transition dipole moment, making their detection with conventional far-field optical techniques challenging. Here, we introduce a new method for probing the optical properties of two-dimensional (2D) materials via near-field coupling to surface plasmon polaritons (SPPs), which selectively enhances optical transitions with dipole moments normal to the 2D plane. We utilize this method to directly detect dark excitons in monolayer TMDs. When a WSe2 monolayer is placed on top of a single-crystal silver film, its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly enhances experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials.

قيم البحث

اقرأ أيضاً

Atomically thin semiconductors provide an excellent platform to study intriguing many-particle physics of tightly-bound excitons. In particular, the properties of tungsten-based transition metal dichalcogenides are determined by a complex manifold of bright and dark exciton states. While dark excitons are known to dominate the relaxation dynamics and low-temperature photoluminescence, their impact on the spatial propagation of excitons has remained elusive. In our joint theory-experiment study, we address this intriguing regime of dark state transport by resolving the spatio-temporal exciton dynamics in hBN-encapsulated WSe$_2$ monolayers after resonant excitation. We find clear evidence of an unconventional, time-dependent diffusion during the first tens of picoseconds, exhibiting strong deviation from the steady-state propagation. Dark exciton states are initially populated by phonon emission from the bright states, resulting in creation of hot excitons whose rapid expansion leads to a transient increase of the diffusion coefficient by more than one order of magnitude. These findings are relevant for both fundamental understanding of the spatio-temporal exciton dynamics in atomically thin materials as well as their technological application by enabling rapid diffusion.
While conventional semiconductor technology relies on the manipulation of electrical charge for the implementation of computational logic, additional degrees of freedom such as spin and valley offer alternative avenues for the encoding of information . In transition metal dichalcogenide (TMD) monolayers, where spin-valley locking is present, strong retention of valley chirality has been reported for MoS$_2$, WSe$_2$ and WS$_2$ while MoSe$_2$ shows anomalously low valley polarisation retention. In this work, chiral selectivity of MoSe$_2$ cavity polaritons under helical excitation is reported with a polarisation degree that can be controlled by the exciton-cavity detuning. In contrast to the very low circular polarisation degrees seen in MoSe$_2$ exciton and trion resonances, we observe a significant enhancement of up to 7 times when in the polaritonic regime. Here, polaritons introduce a fast decay mechanism which inhibits full valley pseudospin relaxation and thus allows for increased retention of injected polarisation in the emitted light. A dynamical model applicable to cavity-polaritons in any TMD semiconductor, reproduces the detuning dependence through the incorporation of the cavity-modified exciton relaxation, allowing an estimate of the spin relaxation time in MoSe$_2$ which is an order of magnitude faster than those reported in other TMDs. The valley addressable exciton-polaritons reported here offer robust valley polarised states demonstrating the prospect of valleytronic devices based upon TMDs embedded in photonic structures, with significant potential for valley-dependent nonlinear polariton-polariton interactions.
The dynamics of a mobile quantum impurity in a degenerate Fermi system is a fundamental problem in many-body physics. The interest in this field has been renewed due to recent ground-breaking experiments with ultra-cold Fermi gases. Optical creation of an exciton or a polariton in a two-dimensional electron system embedded in a microcavity constitutes a new frontier for this field due to an interplay between cavity-coupling favoring ultra-low mass polariton formation and exciton-electron interactions leading to polaron or trion formation. Here, we present cavity spectroscopy of gate-tunable monolayer MoSe$_2$ exhibiting strongly bound trion and polaron resonances, as well as non-perturbative coupling to a single microcavity mode. As the electron density is increased, the oscillator strength determined from the polariton splitting is gradually transferred from the higher-energy repulsive-exciton-polaron resonance to the lower-energy attractive-polaron manifold. Simultaneous observation of polariton formation in both attractive and repulsive branches indicate a new regime of polaron physics where the polariton impurity mass is much smaller than that of the electrons. Our findings shed new light on optical response of semiconductors in the presence of free carriers by identifying the Fermi polaron nature of excitonic resonances and constitute a first step in investigation of a new class of degenerate Bose-Fermi mixtures.
We theoretically investigate surface plasmon polaritons propagating in the thin-film Weyl semimetals. We show how the properties of surface plasmon polaritons are affected by hybridization between plasmons localized at the two metal-dielectric interf aces. Generally, this hybridization results in new mixed plasmon modes, which are called short-range surface plasmons and long-range surface plasmons, respectively. We calculate dispersion curves of these mixed modes for three principle configurations of the axion vector describing axial anomaly in Weyl semimetals. We show that the partial lack of the dispersion and the non-reciprocity can be controlled by fine-tuning of the thickness of the Weyl semimetals, the dielectric constants of the outer insulators, and the direction of the axion vector.
Raman scattering and photoluminescence spectroscopy are used to investigate the optical properties of single layer black phosphorus obtained by mechanical exfoliation of bulk crystals under an argon atmosphere. The Raman spectroscopy, performed in si tu on the same flake as the photoluminescence measurements, demonstrates the single layer character of the investigated samples. The emission spectra, dominated by excitonic effects, display the expected in plane anisotropy. The emission energy depends on the type of substrate on which the flake is placed due to the different dielectric screening. Finally, the blue shift of the emission with increasing temperature is well described using a two oscillator model for the temperature dependence of the band gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا