ترغب بنشر مسار تعليمي؟ اضغط هنا

Multistage Distributionally Robust Mixed-Integer Programming with Decision-Dependent Moment-Based Ambiguity Sets

129   0   0.0 ( 0 )
 نشر من قبل Siqian Shen
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study multistage distributionally robust mixed-integer programs under endogenous uncertainty, where the probability distribution of stage-wise uncertainty depends on the decisions made in previous stages. We first consider two ambiguity sets defined by decision-dependent bounds on the first and second moments of uncertain parameters and by mean and covariance matrix that exactly match decision-dependent empirical ones, respectively. For both sets, we show that the subproblem in each stage can be recast as a mixed-integer linear program (MILP). Moreover, we extend the general moment-based ambiguity set in (Delage and Ye, 2010) to the multistage decision-dependent setting, and derive mixed-integer semidefinite programming (MISDP) reformulations of stage-wise subproblems. We develop methods for attaining lower and upper bounds of the optimal objective value of the multistage MISDPs, and approximate them using a series of MILPs. We deploy the Stochastic Dual Dynamic integer Programming (SDDiP) method for solving the problem under the three ambiguity sets with risk-neutral or risk-averse objective functions, and conduct numerical studies on multistage facility-location instances having diverse sizes under different parameter and uncertainty settings. Our results show that the SDDiP quickly finds optimal solutions for moderate-sized instances under the first two ambiguity sets, and also finds good approximate bounds for the multistage MISDPs derived under the third ambiguity set. We also demonstrate the efficacy of incorporating decision-dependent distributional ambiguity in multistage decision-making processes.



قيم البحث

اقرأ أيضاً

This paper studies distributionally robust optimization (DRO) when the ambiguity set is given by moments for the distributions. The objective and constraints are given by polynomials in decision variables. We reformulate the DRO with equivalent momen t conic constraints. Under some general assumptions, we prove the DRO is equivalent to a linear optimization problem with moment and psd polynomial cones. A moment-SOS relaxation method is proposed to solve it. Its asymptotic and finite convergence are shown under certain assumptions. Numerical examples are presented to show how to solve DRO problems.
We study robust convex quadratic programs where the uncertain problem parameters can contain both continuous and integer components. Under the natural boundedness assumption on the uncertainty set, we show that the generic problems are amenable to ex act copositive programming reformulations of polynomial size. These convex optimization problems are NP-hard but admit a conservative semidefinite programming (SDP) approximation that can be solved efficiently. We prove that the popular approximate S-lemma method --- which is valid only in the case of continuous uncertainty --- is weaker than our approximation. We also show that all results can be extended to the two-stage robust quadratic optimization setting if the problem has complete recourse. We assess the effectiveness of our proposed SDP reformulations and demonstrate their superiority over the state-of-the-art solution schemes on instances of least squares, project management, and multi-item newsvendor problems.
188 - Shipu Zhao , Fengqi You 2020
This paper presents a novel deep learning based data-driven optimization method. A novel generative adversarial network (GAN) based data-driven distributionally robust chance constrained programming framework is proposed. GAN is applied to fully extr act distributional information from historical data in a nonparametric and unsupervised way without a priori approximation or assumption. Since GAN utilizes deep neural networks, complicated data distributions and modes can be learned, and it can model uncertainty efficiently and accurately. Distributionally robust chance constrained programming takes into consideration ambiguous probability distributions of uncertain parameters. To tackle the computational challenges, sample average approximation method is adopted, and the required data samples are generated by GAN in an end-to-end way through the differentiable networks. The proposed framework is then applied to supply chain optimization under demand uncertainty. The applicability of the proposed approach is illustrated through a county-level case study of a spatially explicit biofuel supply chain in Illinois.
This paper expands the work on distributionally robust newsvendor to incorporate moment constraints. The use of Wasserstein distance as the ambiguity measure is preserved. The infinite dimensional primal problem is formulated; problem of moments dual ity is invoked to derive the simpler finite dimensional dual problem. An important research question is: How does distributional ambiguity affect the optimal order quantity and the corresponding profits/costs? To investigate this, some theory is developed and a case study in auto sales is performed. We conclude with some comments on directions for further research.
The most important ingredient for solving mixed-integer nonlinear programs (MINLPs) to global epsilon-optimality with spatial branch and bound is a tight, computationally tractable relaxation. Due to both theoretical and practical considerations, rel axations of MINLPs are usually required to be convex. Nonetheless, current optimization solver can often successfully handle a moderate presence of nonconvexities, which opens the door for the use of potentially tighter nonconvex relaxations. In this work, we exploit this fact and make use of a nonconvex relaxation obtained via aggregation of constraints: a surrogate relaxation. These relaxations were actively studied for linear integer programs in the 70s and 80s, but they have been scarcely considered since. We revisit these relaxations in an MINLP setting and show the computational benefits and challenges they can have. Additionally, we study a generalization of such relaxation that allows for multiple aggregations simultaneously and present the first algorithm that is capable of computing the best set of aggregations. We propose a multitude of computational enhancements for improving its practical performance and evaluate the algorithms ability to generate strong dual bounds through extensive computational experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا