ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributionally Robust Chance Constrained Programming with Generative Adversarial Networks (GANs)

189   0   0.0 ( 0 )
 نشر من قبل Fengqi You
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a novel deep learning based data-driven optimization method. A novel generative adversarial network (GAN) based data-driven distributionally robust chance constrained programming framework is proposed. GAN is applied to fully extract distributional information from historical data in a nonparametric and unsupervised way without a priori approximation or assumption. Since GAN utilizes deep neural networks, complicated data distributions and modes can be learned, and it can model uncertainty efficiently and accurately. Distributionally robust chance constrained programming takes into consideration ambiguous probability distributions of uncertain parameters. To tackle the computational challenges, sample average approximation method is adopted, and the required data samples are generated by GAN in an end-to-end way through the differentiable networks. The proposed framework is then applied to supply chain optimization under demand uncertainty. The applicability of the proposed approach is illustrated through a county-level case study of a spatially explicit biofuel supply chain in Illinois.



قيم البحث

اقرأ أيضاً

Chance constrained optimal power flow (OPF) has been recognized as a promising framework to manage the risk from variable renewable energy (VRE). In presence of VRE uncertainties, this paper discusses a distributionally robust chance constrained appr oximate AC-OPF. The power flow model employed in the proposed OPF formulation combines an exact AC power flow model at the nominal operation point and an approximate linear power flow model to reflect the system response under uncertainties. The ambiguity set employed in the distributionally robust formulation is the Wasserstein ball centered at the empirical distribution. The proposed OPF model minimizes the expectation of the quadratic cost function w.r.t. the worst-case probability distribution and guarantees the chance constraints satisfied for any distribution in the ambiguity set. The whole method is data-driven in the sense that the ambiguity set is constructed from historical data without any presumption on the type of the probability distribution, and more data leads to smaller ambiguity set and less conservative strategy. Moreover, special problem structures of the proposed problem formulation are exploited to develop an efficient and scalable solution approach. Case studies are carried out on IEEE 14 and 118 bus systems to show the accuracy and necessity of the approximate AC model and the attractive features of the distributionally robust optimization approach compared with other methods to deal with uncertainties.
We propose kernel distributionally robust optimization (Kernel DRO) using insights from the robust optimization theory and functional analysis. Our method uses reproducing kernel Hilbert spaces (RKHS) to construct a wide range of convex ambiguity set s, which can be generalized to sets based on integral probability metrics and finite-order moment bounds. This perspective unifies multiple existing robust and stochastic optimization methods. We prove a theorem that generalizes the classical duality in the mathematical problem of moments. Enabled by this theorem, we reformulate the maximization with respect to measures in DRO into the dual program that searches for RKHS functions. Using universal RKHSs, the theorem applies to a broad class of loss functions, lifting common limitations such as polynomial losses and knowledge of the Lipschitz constant. We then establish a connection between DRO and stochastic optimization with expectation constraints. Finally, we propose practical algorithms based on both batch convex solvers and stochastic functional gradient, which apply to general optimization and machine learning tasks.
83 - Yiling Zhang , Jin Dong 2021
Aggregation of heating, ventilation, and air conditioning (HVAC) loads can provide reserves to absorb volatile renewable energy, especially solar photo-voltaic (PV) generation. However, the time-varying PV generation is not perfectly known when the s ystem operator decides the HVAC control schedules. To consider the unknown uncertain PV generation, in this paper, we formulate a distributionally robust chance-constrained (DRCC) building load control problem under two typical ambiguity sets: the moment-based and Wasserstein ambiguity sets. We derive mixed-integer linear programming (MILP) reformulations for DRCC problems under both sets. Especially for the DRCC problem under the Wasserstein ambiguity set, we utilize the right-hand side (RHS) uncertainty to derive a more compact MILP reformulation than the commonly known MILP reformulations with big-M constants. All the results also apply to general individual chance constraints with RHS uncertainty. Furthermore, we propose an adjustable chance-constrained variant to achieve a trade-off between the operational risk and costs. We derive MILP reformulations under the Wasserstein ambiguity set and second-order conic programming (SOCP) reformulations under the moment-based set. Using real-world data, we conduct computational studies to demonstrate the efficiency of the solution approaches and the effectiveness of the solutions.
238 - Chaosheng Dong , Bo Zeng 2020
Inverse multiobjective optimization provides a general framework for the unsupervised learning task of inferring parameters of a multiobjective decision making problem (DMP), based on a set of observed decisions from the human expert. However, the pe rformance of this framework relies critically on the availability of an accurate DMP, sufficient decisions of high quality, and a parameter space that contains enough information about the DMP. To hedge against the uncertainties in the hypothetical DMP, the data, and the parameter space, we investigate in this paper the distributionally robust approach for inverse multiobjective optimization. Specifically, we leverage the Wasserstein metric to construct a ball centered at the empirical distribution of these decisions. We then formulate a Wasserstein distributionally robust inverse multiobjective optimization problem (WRO-IMOP) that minimizes a worst-case expected loss function, where the worst case is taken over all distributions in the Wasserstein ball. We show that the excess risk of the WRO-IMOP estimator has a sub-linear convergence rate. Furthermore, we propose the semi-infinite reformulations of the WRO-IMOP and develop a cutting-plane algorithm that converges to an approximate solution in finite iterations. Finally, we demonstrate the effectiveness of our method on both a synthetic multiobjective quadratic program and a real world portfolio optimization problem.
We propose and analyze algorithms for distributionally robust optimization of convex losses with conditional value at risk (CVaR) and $chi^2$ divergence uncertainty sets. We prove that our algorithms require a number of gradient evaluations independe nt of training set size and number of parameters, making them suitable for large-scale applications. For $chi^2$ uncertainty sets these are the first such guarantees in the literature, and for CVaR our guarantees scale linearly in the uncertainty level rather than quadratically as in previous work. We also provide lower bounds proving the worst-case optimality of our algorithms for CVaR and a penalized version of the $chi^2$ problem. Our primary technical contributions are novel bounds on the bias of batch robust risk estimation and the variance of a multilevel Monte Carlo gradient estimator due to [Blanchet & Glynn, 2015]. Experiments on MNIST and ImageNet confirm the theoretical scaling of our algorithms, which are 9--36 times more efficient than full-batch methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا