ﻻ يوجد ملخص باللغة العربية
The recent discovery of superconductivity in oxygen-reduced monovalent nickelates has raised a new platform for the study of unconventional superconductivity, with similarities and differences with the cuprate high temperature superconductors. In this paper we investigate the family of infinite-layer nickelates $R$NiO$_2$ with rare-earth $R$ spanning across the lanthanide series, introducing a new and non-trivial knob with which to tune nickelate superconductivity. When traversing from La to Lu, the out-of-plane lattice constant decreases dramatically with an accompanying increase of Ni $ d_{x^2-y^2}$ bandwidth; however, surprisingly, the role of oxygen charge transfer diminishes. In contrast, the magnetic exchange grows across the lanthanides which may be favorable to superconductivity. Moreover, compensation effects from the itinerant $5d$ electrons present a closer analogy to Kondo lattices, indicating a stronger interplay between charge transfer, bandwidth renormalization, compensation, and magnetic exchange. We also obtain the microscopic Hamiltonian using Wannier downfolding technique, which will provide the starting point for further many-body theoretical studies.
The search for oxide materials with physical properties similar to the cuprate high Tc superconductors, but based on alternative transition metals such as nickel, has grown and evolved over time. The recent discovery of superconductivity in doped inf
The discovery of infinite layer nickelate superconductor marks the new era in the field of superconductivity. In the rare-earth (Re) nickelates ReNiO2, although the Ni is also of d9 electronic configuration, analogous to Cu d9 in cuprates, whether el
We theoretically investigate the unconventional superconductivity in the newly discovered infinite-layer nickelates Nd$_{1-x}$Sr$_{x}$NiO$_{2}$ based on a two-band model. By analyzing the transport experiments, we propose that the doped holes dominan
The recent discovery of the superconductivity in the doped infinite layer nickelates $R$NiO$_2$ ($R$=La, Pr, Nd) is of great interest since the nickelates are isostructural to doped (Ca,Sr)CuO$_2$ having superconducting transition temperature ($T_{rm
The discovery of superconductivity in infinite-layer nickelates brings us tantalizingly close to a new material class that mirrors the cuprate superconductors. Here, we report on magnetic excitations in these nickelates, measured using resonant inela