ﻻ يوجد ملخص باللغة العربية
We introduce a new class of Runge-Kutta type methods suitable for time stepping to propagate hyperbolic solutions within tent-shaped spacetime regions. Unlike standard Runge-Kutta methods, the new methods yield expected convergence properties when standard high order spatial (discontinuous Galerkin) discretizations are used. After presenting a derivation of nonstandard order conditions for these methods, we show numerical examples of nonlinear hyperbolic systems to demonstrate the optimal convergence rates. We also report on the discrete stability properties of these methods applied to linear hyperbolic equations.
We categorify the RK family of numerical integration methods (explicit and implicit). Namely we prove that if a pair of ODEs are related by an affine map then the corresponding discrete time dynamical systems are also related by the map. We show that
In this work we consider a mixed precision approach to accelerate the implemetation of multi-stage methods. We show that Runge-Kutta methods can be designed so that certain costly intermediate computations can be performed as a lower-precision comput
This study computes the gradient of a function of numerical solutions of ordinary differential equations (ODEs) with respect to the initial condition. The adjoint method computes the gradient approximately by solving the corresponding adjoint system
Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were proposed and analyzed in [8]. These specially designed methods use reduced precision or the implicit computations and full precision fo
It is well-known that a numerical method which is at the same time geometric structure-preserving and physical property-preserving cannot exist in general for Hamiltonian partial differential equations. In this paper, we present a novel class of para