ﻻ يوجد ملخص باللغة العربية
In this article, we analyse the relationship between the Bell violation and the secure key rate of entanglement assisted quantum key distribution (QKD) protocols. Specifically, we address the question whether Bell violation is necessary or sufficient for secure communication. We construct a class of states which do not show Bell violation, however, which can be used for secure communication after local filtering. Similarly, we identify another class of states which show Bell violation but can not be used for generating secure key even after local filtering. The existence of these two classes of states demonstrates that Bell violation as an initial resource is neither necessary nor sufficient for QKD. Our work therefore forces a departure from traditional thinking that the degree of Bell violation is a key resource for quantum communication and brings out the role of local filtering.
The simplest device-independent quantum key distribution protocol is based on the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality and allows two users, Alice and Bob, to generate a secret key if they observe sufficiently strong correlations. There
We report on a complete free-space field implementation of a modified Ekert91 protocol for quantum key distribution using entangled photon pairs. For each photon pair we perform a random choice between key generation and a Bell inequality. The amount
Since the experimental observation of the violation of the Bell-CHSH inequalities, much has been said about the non-local and contextual character of the underlying system. But the hypothesis from which Bells inequalities are derived differ according
We construct a simple algorithm to generate any CHSH type Bell inequality involving a party with two local binary measurements from two CHSH type inequalities without this party. The algorithm readily generalizes to situations, where the additional o
This chapter describes the application of lasers, specifically diode lasers, in the area of quantum key distribution (QKD). First, we motivate the distribution of cryptographic keys based on quantum physical properties of light, give a brief introduc