ﻻ يوجد ملخص باللغة العربية
The simplest device-independent quantum key distribution protocol is based on the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality and allows two users, Alice and Bob, to generate a secret key if they observe sufficiently strong correlations. There is, however, a mismatch between the protocol, in which only one of Alices measurements is used to generate the key, and the CHSH expression, which is symmetric with respect to Alices two measurements. We therefore investigate the impact of using an extended family of Bell expressions where we give different weights to Alices measurements. Using this family of asymmetric Bell expressions improves the robustness of the key distribution protocol for certain experimentally-relevant correlations. As an example, the tolerable error rate improves from 7.15% to about 7.42% for the depolarising channel. Adding random noise to Alices key before the postprocessing pushes the threshold further to more than 8.34%. The main technical result of our work is a tight bound on the von Neumann entropy of one of Alices measurement outcomes conditioned on a quantum eavesdropper for the family of asymmetric CHSH expressions we consider and allowing for an arbitrary amount of noise preprocessing.
Device-independent quantum key distribution (DIQKD) is the art of using untrusted devices to distribute secret keys in an insecure network. It thus represents the ultimate form of cryptography, offering not only information-theoretic security against
Device-independent quantum key distribution (DIQKD) guarantees the security of a shared key without any assumptions on the apparatus used, provided that the observed data violate a Bell inequality. Such violation is challenging experimentally due to
Device-independent quantum key distribution protocols allow two honest users to establish a secret key with minimal levels of trust on the provider, as security is proven without any assumption on the inner working of the devices used for the distrib
Measurement-device-independent quantum key distribution (MDI-QKD) can eliminate all detector side-channel loopholes and has shown excellent performance in long-distance secret keys sharing. Conventional security proofs, however, require additional as
Device-independent quantum key distribution aims to provide key distribution schemes whose security is based on the laws of quantum physics but which does not require any assumptions about the internal working of the quantum devices used in the proto