ﻻ يوجد ملخص باللغة العربية
Magnetic skyrmions have been the focus of intense research due to their unique qualities which result from their topological protections. Previous work on Cu$_2$OSeO$_3$, the only known insulating multiferroic skyrmion material, has shown that chemical substitution alters the skyrmion phase. We chemically substitute Zn, Ag, and S into powdered Cu$_2$OSeO$_3$ to study the effect on the magnetic phase diagram. In both the Ag and the S substitutions, we find that the skyrmion phase is stabilized over a larger temperature range, as determined via magnetometry and small-angle neutron scattering (SANS). Meanwhile, while previous magnetometry characterization suggests two high temperature skyrmion phases in the Zn-substituted sample, SANS reveals the high temperature phase to be skyrmionic while we are unable to distinguish the other from helical order. Overall, chemical substitution weakens helical and skyrmion order as inferred from neutron scattering of the $|$q$| approx$ 0.01 $r{A}^{-1}$ magnetic peak.
The cubic chiral helimagnets with the $P2_13$ space group represent a group of compounds in which the stable skyrmion-lattice state is experimentally observed. The key parameter that controls the energy landscape of such systems and determines the em
Magnetic skyrmions in chiral magnets are nanoscale, topologically-protected magnetization swirls that are promising candidates for spintronics memory carriers. Therefore, observing and manipulating the skyrmion state on the surface level of the mater
Magnetic skyrmions are nano-sized topological spin textures stabilized by a delicate balance of magnetic energy terms. The chemical substitution of the underlying crystal structure of skyrmion-hosting materials offers a route to manipulate these ener
Topologically protected nanoscale spin textures, known as magnetic skyrmions, possess particle-like properties and feature emergent magnetism effects. In bulk cubic heli-magnets, distinct skyrmion resonant modes are already identified using a techniq
Chiral magnetic textures with non-trivial topology are known as skyrmions, and due to their unique properties they are promising in novel magnetic storage applications. While the electric manipulation of either isolated skyrmions or a whole skyrmion