ترغب بنشر مسار تعليمي؟ اضغط هنا

Increasing the skyrmion stability in Cu$_2$OSeO$_3$ by chemical substitution

77   0   0.0 ( 0 )
 نشر من قبل Aleksandr Sukhanov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cubic chiral helimagnets with the $P2_13$ space group represent a group of compounds in which the stable skyrmion-lattice state is experimentally observed. The key parameter that controls the energy landscape of such systems and determines the emergence of a topologically nontrivial magnetic structures is the Dzyaloshinskii-Moriya interaction (DMI). Chemical substitution is recognized as a convenient instrument to tune the DMI in real materials and has been successfully utilized in studies of a number of chiral magnets, such as MnSi, FeGe, MnGe, and others. In our study, we applied small-angle neutron scattering to investigate how chemical substitution influences the skyrmionic properties of an insulating helimagnet Cu$_2$OSeO$_3$ when Cu ions are replaced by either Zn or Ni. Our results demonstrate that the DMI is enhanced in the Ni-substituted compounds (Cu,Ni)$_2$OSeO$_3$, but weakened in (Cu,Zn)$_2$OSeO$_3$. The observed changes in the DMI strength are reflected in the magnitude of the spin-spiral propagation vector and the temperature stability of the skyrmion phase.



قيم البحث

اقرأ أيضاً

Magnetic skyrmions have been the focus of intense research due to their unique qualities which result from their topological protections. Previous work on Cu$_2$OSeO$_3$, the only known insulating multiferroic skyrmion material, has shown that chemic al substitution alters the skyrmion phase. We chemically substitute Zn, Ag, and S into powdered Cu$_2$OSeO$_3$ to study the effect on the magnetic phase diagram. In both the Ag and the S substitutions, we find that the skyrmion phase is stabilized over a larger temperature range, as determined via magnetometry and small-angle neutron scattering (SANS). Meanwhile, while previous magnetometry characterization suggests two high temperature skyrmion phases in the Zn-substituted sample, SANS reveals the high temperature phase to be skyrmionic while we are unable to distinguish the other from helical order. Overall, chemical substitution weakens helical and skyrmion order as inferred from neutron scattering of the $|$q$| approx$ 0.01 $r{A}^{-1}$ magnetic peak.
Chiral magnetic textures with non-trivial topology are known as skyrmions, and due to their unique properties they are promising in novel magnetic storage applications. While the electric manipulation of either isolated skyrmions or a whole skyrmion lattice have been intensively reported, the electric effects on skyrmion clusters remain scarce. In magnetoelectric compound Cu$_2$OSeO$_3$, a skyrmion cluster can be created near the helical-skyrmion phase boundary. Here, we report the in situ electric field writing/erasing of skyrmions in such a skyrmion cluster. Our real space/time image data obtained by Lorentz transmission electron microscopy and the quantitative analysis evidence the linear increase of the number of skyrmions in the cluster upon the application of a creating electric field. The energy needed to create a single skyrmion is estimated to be $mathcal{E}=4.7 times 10^{-24}$ J.
Magnetic skyrmions in chiral magnets are nanoscale, topologically-protected magnetization swirls that are promising candidates for spintronics memory carriers. Therefore, observing and manipulating the skyrmion state on the surface level of the mater ials are of great importance for future applications. Here, we report a controlled way of creating a multidomain skyrmion state near the surface of a Cu$_{2}$OSeO$_{3}$ single crystal, observed by soft resonant elastic x-ray scattering. This technique is an ideal tool to probe the magnetic order at the $L_{3}$ edge of $3d$ metal compounds giving a depth sensitivity of ${sim}50$ nm. The single-domain sixfold-symmetric skyrmion lattice can be broken up into domains overcoming the propagation directions imposed by the cubic anisotropy by applying the magnetic field in directions deviating from the major cubic axes. Our findings open the door to a new way to manipulate and engineer the skyrmion state locally on the surface, or on the level of individual skyrmions, which will enable applications in the future.
Magnetic skyrmions are nano-sized topological spin textures stabilized by a delicate balance of magnetic energy terms. The chemical substitution of the underlying crystal structure of skyrmion-hosting materials offers a route to manipulate these ener gy contributions, but also introduces additional effects such as disorder and pinning. While the effects of doping and disorder have been well studied in B20 metallic materials such as Fe$_{1-x}$Co$_x$Si and Mn$_{1-x}$Fe$_x$Si, the consequences of chemical substitution in the magnetoelectric insulator Cu$_2$OSeO$_3$ have not been fully explored. In this work, we utilize a combination of AC magnetometry and small angle neutron scattering to investigate the magnetic phase transition dynamics in pristine and Zn-substituted Cu$_2$OSeO$_3$. The results demonstrate that the first order helical-conical phase transition exhibits two thermally separated behavioural regimes: at high temperatures, the helimagnetic domains transform by large-scale, continuous rotations, while at low temperatures, the two phases coexist. Remarkably, the effects of pinning in the substituted sample are less prevalent at low temperatures, compared to high temperatures, despite the reduction of available thermal activation energy. We attribute this behaviour to the large, temperature-dependent, cubic anisotropy unique to Cu$_2$OSeO$_3$, which becomes strong enough to overcome the pinning energy at low temperatures. Consideration and further exploration of these effects will be crucial when engineering skyrmion materials towards future applications.
We report small angle X-ray scattering (SAXS) measurements of the skyrmion lattice in two 200~nm thick Cu$_2$OSeO$_3$ lamellae aligned with the applied magnetic field parallel to the out of plane [110] or [100] crystallographic directions. Our measur ements show that the equilibrium skyrmion phase in both samples is expanded significantly compared to bulk crystals, existing between approximately 30 and 50~K over a wide region of magnetic field. This skyrmion state is elliptically distorted at low fields for the [110] sample, and symmetric for the [100] sample, possibly due to crystalline anisotropy becoming more important at this sample thickness than it is in bulk samples. Furthermore, we find that a metastable skyrmion state can be observed at low temperature by field cooling through the equilibrium skyrmion pocket in both samples. In contrast to the behavior in bulk samples, the volume fraction of metastable skyrmions does not significantly depend on cooling rate. We show that a possible explanation for this is the change in the lowest temperature of the skyrmion state in this lamellae compared to bulk, without requiring different energetics of the skyrmion state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا