ﻻ يوجد ملخص باللغة العربية
The fundamental issue in the energetic performance of power plants, working both as traditional fuel engines and as combined cycle turbine (gas-steam), lies in quantifying the internal irreversibilities which are associated with the working substance operating in cycles. The purpose of several irreversible energy converter models is to find objective thermodynamic functions that determine operation modes for real thermal engines and at the same time study the trade off between energy losses per cycle and the useful energy. As those objective functions, we focus our attention on a generalization of the so-called ecological function in terms of an $epsilon$--parameter that depends on the particular heat transfer law used in the irreversible heat engine model. In this work, we mathematically describe the configuration space of an irreversible Curzon-Ahlborn type model. The above allows to determine the optimal relations between the model parameters so that a power plant operates in physically accessible regions, taking into account internal irreversibilities, introduced in two different ways (additively and multiplicatively). In addition, we establish the conditions that the $epsilon$--parameter must fulfill for the energy converter works in an optimal region between maximum power output and maximum efficiency points.
The prediction of electrical power in combined cycle power plants is a key challenge in the electrical power and energy systems field. This power output can vary depending on environmental variables, such as temperature, pressure, and humidity. Thus,
We study systems with finite number of states $A_i$ ($i=1,..., n$), which obey the first order kinetics (master equation) without detailed balance. For any nonzero complex eigenvalue $lambda$ we prove the inequality $frac{|Im lambda |}{|Re lambda |}
The correlations of multiple renewable power plants (RPPs) should be fully considered in the power system with very high penetration renewable power integration. This paper models the uncertainties, spatial correlation of multiple RPPs based on Copul
We introduce a definition of gamma-ray burst (GRB) duty cycle that describes the GRBs efficiency as an emitter; it is the GRBs average flux relative to the peak flux. This GRB duty cycle is easily described in terms of measured BATSE parameters; it i
While the use of energy storage combined with grid-scale photovoltaic power plants continues to grow, given current lithium-ion battery prices, there remains uncertainty about the profitability of these solar-plus-storage projects. At the same time,